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Administrivia

‣ Homework 1 will be released soon. 

‣ 2-3 wriAen ques-ons 

‣ One programming task:  

‣ Logis-c Regression for Text Classifica-on (Hate Speech) 



Outline of the Course

{Applica-ons: 
MT, IE, 
summariza-on, 
dialogue, etc.

ML and structured 
predic-on for NLP {
Neural Networks 
seman-cs {
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This Lecture

‣ Linear classifica-on fundamentals

‣ Three discrimina-ve models: logis-c regression, perceptron, SVM

‣ Naive Bayes, maximum likelihood in genera-ve models

‣ Different mo-va-ons but very similar update rules / inference!



Classifica-on



Classifica-on

‣ Embed datapoint in a feature space
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‣ Linear decision rule: 

           = [0.5, 1.6, 0.3]

 [0.5, 1.6, 0.3, 1]

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint      with label 

but in this lecture           and     are interchangeablexf(x)

w>f(x) + b > 0

f(x)

‣ Can delete bias if we augment feature space:

w>f(x) > 0



f(x) = [x1, x2, x12, x22, x1x2]f(x) = [x1, x2]

Linear func-ons are powerful!
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‣ “Kernel trick” does this for “free,” but  is too expensive to use in NLP 
applica-ons, training is              instead ofO(n2) O(n · (num feats))

hAps://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM
hAp://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf

https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM
http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf


Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or 
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

‣ Train weights on data to get our classifier



Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the]   [contains a]   [contains was]  [contains movie]  [contains film]

0 0 1 1 0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…



What are features?
‣ Don’t have to be just bag-of-words

‣ More sophis-cated feature mappings possible (o-idf), as well as lots 
of other features: character n-grams, parts of speech, lemmas, …

f(x)



Naive Bayes



Naive Bayes
‣ Data point                                , label 

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant 
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assump-on: 
condi-onal independence

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on 

P (y|x)

y

n
xi

‣ Compute              , predict                               to classify
P (x, y)

argmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#



Why the log?
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‣  Mul-plying together lots of probabili-es

P (y|x) = P (y)P (x|y)
P (x)

= P (y)
nY

i=1

P (xi|y)

‣  Probabili-es are numbers between 0 and 1

Q:  What could go wrong here?



Why the log?

16

x log(x)

0.0000001 -16.118095651

0.000001 -13.815511

0.00001 -11.512925

0.0001 -9.210340

0.001 -6.907755

0.01 -4.605170

0.1 -2.302585

‣  Problem — floa-ng point underflow

‣  Solu-on: working with probabili-es in log space



Maximum Likelihood Es-ma-on
‣ Data points              provided (j indexes over examples)

‣ Find values of                              that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

ith feature of jth example



Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Maximum likelihood parameters for binomial/
mul-nomial = read counts off of the data + normalize

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

hAp://fooplot.com/

http://fooplot.com/


Maximum Likelihood Es-ma-on
‣ Data points              provided (j indexes over examples)

‣ Find values of                              that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

‣ Equivalent to maximizing logarithm of data likelihood:
mX

j=1

logP (yj , xj) =
mX

j=1

"
logP (yj) +

nX

i=1

logP (xji|yj)
#

ith feature of jth example



Maximum Likelihood for Naive Bayes

P (great|+) =
1

2

P (great|�) =
1

4

P (+) =
1

2

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (�) =

1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[ ] =
1/4
1/8[ ]=

2/3
1/3[ ]it was great

P (great|�) =
1

4

P (y|x) / P (y)
nY

i=1

P (xi|y)

hAp://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

prior

word 
likelihood



Naive Bayes: Learning

hAp://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

‣ Learning = es-mate the parameters of the model

‣ Prior probability — P(+) and P(-): 
‣ frac-on of + (or -) documents among all documents

‣ Word likelihood — P(wordi| +) and P(wordi| -): 
‣ number of + (or -) documents wordi is observed, divide by the total 

number of documents of + (or -) documents  
  

P (y|x) / P (y)
nY

i=1

P (xi|y)

This is for Bernoulli (binary features) document model!



Zero Probability Problem

22

‣ What if we have seen no training document with the word “fantas-c”  
and classified in the topic posi-ve?

‣ Word likelihood — P(wordi| +) and P(wordi| -): 
‣ frequency of wordi is observed plus 1, divide by …  

‣ Laplace (add-1) Smoothing



Naive Bayes

23

‣ Bernoulli document model: 
‣ A document is represented by binary features 
‣ Feature value be 1 if the corresponding word is represent in 

the document and 0 if not

hAp://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

‣ Mul-nominal document model” 
‣ A document is represented by integer elements 
‣ Feature value is the frequency of that word in the document 
‣ See textbook and lecture note by Hiroshi Shimodaira linked below  

for more details 



Naive Bayes: Summary
‣ Model

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Learning: maximize                 by reading counts off the data

‣ Inference

P (x, y)

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ="></latexit>

y

n
xi

w>f(x) > 0
Linear model!



Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generaCve: 
spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beauCful and gorgeous are not independent!

the film was beauCful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

‣ Discrimina-ve models model P(y|x) directly (SVMs, most neural networks, …)



Genera-ve vs. Discrimina-ve Models
‣ Genera-ve models: 
‣ Bayes nets / graphical models 
‣ Some of the model capacity goes to explaining the distribu-on of x; 

predic-on uses Bayes rule post-hoc 
‣ Can sample new instances (x, y)

P (x, y)

P (y|x)‣ Discrimina-ve models: 
‣ SVMs, logis-c regression, CRFs, most neural networks 
‣ Model is trained to be good at predic-on, but doesn’t model x

‣ We’ll come back to this dis-nc-on throughout this class

Break!



Logis-c Regression



Logis-c Regression

‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

 
1 + exp

 
nX

i=1

wixji

!!

sum over features

P (y = 1|x) � 0.5 , w>x � 0P (y = +|x) = logistic(w>x)‣ Decision rule:



deriv. of exp
@ex

@x
= ex

deriv. of log 
@ log x

@x
=

1

x

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

 
1 + exp

 
nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

 
1 + exp

 
nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

 
nX

i=1

wixji

!

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

 
1 + exp

 
nX

i=1

wixji

!!

@f

@x
=

@f

@g

@g

@x
=

@f(g)

@g

@g(x)

@x

chain rule:



Logis-c Regression

If P(+) is close to 1, make very liAle update 
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi-ve example

‣ Gradient of wi on nega-ve example

If P(+) is close to 0, make very liAle update 
Otherwise make wi look less like xji, which will decrease P(+)

= xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances. 

xj(yj � P (yj = 1|xj))‣ Can combine these gradients as @L(xj , yj)

@wi
=



Gradient Decent

xj(yj � P (yj = 1|xj))‣ Can combine these gradients as @L(xj , yj)

@wi
=

data points (j)log likelihood of data P(y|x)

‣ Training set log-likelihood: 

‣ Gradient vector: 



Gradient Decent

‣ Gradient decent (or ascent) is an itera-ve op-miza-on algorithm for finding 
the minimum (or maximum) of a func-on. 

Repeat until convergence { 

    from j = 1 to m 

}
learning rate (step size)

L

Lmin

L

Lmin



Learning Rate

33 Credit: Jeremy Jordan



Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights: mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiyng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping
‣ Large numbers of sparse features are hard to overfit in a really bad way



Logis-c Regression: Summary
‣ Model

‣ Learning: gradient ascent on the (regularized) discrimina-ve log-likelihood

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)



Logis-c Regression vs. Naive Bayes
‣ Both are (log) linear models

‣ Logis-c regression doesn’t assume condi-onal independence of features 
‣ Weights are trained independently 
‣ Can handle highly correlated overlapping features

w>f(x) > 0

‣ Naive Bayes assume condi-onal independence of features 
‣ Weights are trained jointly



Perceptron/SVM



Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule:

‣ Guaranteed to eventually separate the data if the data are separable

‣ If incorrect: if posi-ve, 

if nega-ve, 
w  w + x

w  w � x w  w � xP (y = 1|x)
w  w + x(1� P (y = 1|x))

Logis-c Regressionw>x > 0

hAp://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

‣ Algorithm is very similar to logis-c regression

http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf


Perceptron

Frank RosenblaA (1928-1971) 
PhD 1956 from Cornell



Support Vector Machines (extracurricular)

‣ Many separa-ng hyperplanes — is there a best one?
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‣ Many separa-ng hyperplanes — is there a best one?
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Support Vector Machines (extracurricular)



‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.

As a single constraint:

minimizing norm with 
fixed margin <=> 
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solu-on (data is generally non-separable) — need slack!

Support Vector Machines (extracurricular)



N-Slack SVMs (extracurricular)

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The      are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently



LR, Perceptron, SVM (extracurricular)

Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis-c
Perceptron

0-1

Lo
ss

w>x

*gradients are for maximizing things, which is why they are flipped

x if w>x < 1, else 0

‣ Gradients on Posi-ve Examples



Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega-on)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for 
all X following the not

+
+
—



Sen-ment Analysis

‣ Simple feature sets can do preAy well! 

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sen-ment Analysis

Wang and Manning (2012)

Before neural nets had taken off 
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB 
can be beAer for small data

81.5    89.5Kim (2014) CNNs



Recap

‣ Logis-c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ Logis-c regression, perceptron, and SVM are closely related

Decision rule: P (y = 1|x) � 0.5 , w>x � 0

x(y � P (y = 1|x))

‣ All gradient updates: “make it look more like the right thing and less like the 
wrong thing”



Op-miza-on — next -me…

‣ Range of techniques from simple gradient descent (works preAy well) 
to more complex methods (can work beAer), e.g., Newton’s method, 
Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

‣ Most methods boil down to: take a gradient and a step size, apply the 
gradient update -mes step size, incorporate es-mated curvature 
informa-on to make the update more effec-ve



QA Time

50


