Binary Classification

Wel Xu

(many slides from Greg Durrett and Vivek Srikumar)

Administrivia

» Homework 1 will be released soon.

» 2-3 written questions
» One programming task:

» Logistic Regression for Text Classification (Hate Speech)

Outline of the Course

ML and structured
prediction for NLP

Neural Networks
semantics

Applications:
MT, IE,

summarization,

dialogue, etc.

Date
1/14/2021

1/20/2021
1/25/2021
1/27/2021

2/1/2021

2/3/2021

2/8/2021
2/10/2021
2/15/2021
2/17/12021
2/22/2021
2/24/2021

3/1/2021

3/3/2021

3/8/2021
3/10/2021
3/15/2021
3/17/2021
3/17/2021
3/22/2021
3/24/2021
3/29/2021
3/31/2021

4/5/2021

4/7/2021
4/12/2021
4/14/2021
4/19/2021
4/21/2021
4/26/2021

Topics (tentative and subject to change)

first day of class

Course Overview - 1st lecture

Binary Classification (naive bayes and logisitic regression)

Multiclass Classification

Neural Networks (feedforward networks)
Neural Networks (back propogation)
PyTorch Tutorial, Sequence Models
Viterbi Algorithm

Conditional Random Fields

N-gram Language Models

Word Embeddings

Recurrent Neural Networks
Convolutional Neural Networks
Statistical Machine Translation
(Guest Lecture)
Sequence-to-Sequence Model
Attention and Copy Mechanism
Question Answering / Reading Comprehension
Withdrawal deadline

Parsing

No class - mid-semester break
Neural Machine Translation
Transformer Model

Generation (Guest Lecture)
Information Extraction

Dialog (Guest Lecture)

Pre-trained Language Models / BERT

Computational Social Science (Guest Lecture)

Speech Recognition
Final class day

Readings

SQuabD, BiDAF

Google NMT
Attention is all you need

'K B B

90| 00

10.
1Ll

1 7

13.
14.

1 [
8 L

17
18.

19
20.

21

22.

Area

Applications

Dialogue and Interactive Systems
Discourse and Pragmatics

Document Analysis

Generation

Information Extraction and Text Mining
Linguistic Theories, Cognitive Modeling and
Psycholinguistics

Machine Learning

Machine Translation

Multidisciplinary and Area Chair COI
Multilinguality

Phonology Morphology and Word
Segmentation

Question Answering

Resources and Evaluation

Sentence-level semantics

Sentiment Analysis and Argument Mining
Social Media

Summarization

Tagging Chunking Syntax and Parsing
Textual Inference and Other Areas of
Semantics

Vision Robotics Multimodal Grounding and
Speech

Word-level Semantics

Long Accepts Accept S 2 © |48 Secure
submissions rate (%) @ Menu
65 14 28’8 About the ACL
126 38 30.2 —
33 7 213 Journls
4 8 8 1 6 i 7 Conferences
96 32 33.3
ACL Fellows
155 37 23.9
Anthology
39 9 23.1 Wiki
1 48 3 8 25.7 Software Registry
102 27 26.5 d.
69 21 30.4 Archives
43 11 25.6
26 7 26.9
99 32 32.3
70 26 37.1
69 14 20.3
91 24 26.4
51 14 27.5
48 11 22.9
50 17 34.0
44 16 36.4
56 20 35.7
78 20 25.6

ACL 2019 conference

NLP Research

Conference News
ACL

EACL

EMNLP

NAACL

JCNLP

https://www.aclweb.org/portal/what-is-cl

Association for

Computational Linguistics Search

What is the ACL and what is Computational Linguistics?

The Association for Computational Linguistics (ACL) is the premier international scientific and
professional society for people working on computational problems involving human
language, a field often referred to as either computational linguistics or natural language
processing (NLP). The association was founded in 1962, originally named the Association for
Machine Translation and Computational Linguistics (AMTCL), and became the ACL in 1968.
Activities of the ACL include the holding of an annual meeting each summer and the
sponsoring of the journal Computational Linguistics, published by MIT Press; this conference
and journal are the leading publications of the field. For more information, see:
https://www.aclweb.org/.

What is Computational Linguistics?

Computational linguistics is the scientific study of language from a computational perspective.
Computational linguists are interested in providing computational models of various kinds of
linguistic phenomena. These models may be "knowledge-based" ("hand-crafted") or "data-
driven" ("statistical" or "empirical"). Work in computational linguistics is in some cases
motivated from a scientific perspective in that one is trying to provide a computational
explanation for a particular linguistic or psycholinguistic phenomenon; and in other cases the
motivation may be more purely technological in that one wants to provide a working
component of a speech or natural language system. Indeed, the work of computational
linguists is incorporated into many working systems today, including speech recognition
systems, text-to-speech synthesizers, automated voice response systems, web search engines,
text editors, language instruction materials, to name just a few.

Popular computational linguistics textbooks include:

e Christopher Manning and Hinrich Schitze (1999) Foundations of Statistical Natural
Language Processing , Cambridge, Massachusetts, USA. MIT Press.
Also see the book's supplemental materials website at Stanford.

e Daniel Jurafsky and James Martin (2008) An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition , Second Edition. Prentice Hall.

ACL'19 at a Glance

Growth of ACL: submissions, reviewers, SACs and ACs

= SACSs and Acs Reviewers Submissions
3000
2500
Submissions per country (top 20)
900
2000
800
700
1500 e
500
400
1000 300
200
100 I I I
500
| IIIIIllll---.-
e SR S IR el BT G N IR e B SR e
(;ﬁ> "o) éf) <6@ NG <§>) RN ch‘ N égb e G §§9 gﬁb <§@‘ RN
> ° & . LA B & & S &
_.&Q/ 8{‘ G ,(’O e C)Q &) \\,(\ Q Q\’ ")
N e A Q‘ < S &
N &) hy &
0 N) Q\@Q Qpc,‘v

m long papers @ Short papers

6661
000¢
100¢
200¢
€00¢
¥00¢
S00¢
900¢
L00¢
800¢
600¢
010¢
110¢
(410 x4
€10¢
v10¢
ST0¢
910¢
LT0C
810¢
610¢

This Lecture

» Linear classification fundamentals

» Naive Bayes, maximum likelihood in generative models

» Three discriminative models: logistic regression, perceptron, SVM

» Different motivations but very similar update rules / inference!

Classification

Classification

» Datapoint g with label y € {0,1}

» Embed datapoint in a feature space f(z) € R™
but in this lecture f(z) and 4 are interchangeable

» Linear decision rule: " f(z) +b > 0

w' f(z) >0

» Can delete bias if we augment feature space:

f(x)=10.5,1.6,0.3]
'
0.5, 1.6, 0.3, 1]

Linear functions are powerful!

—
—
—
—
—
—
—
—
—
—
—
—
.

fix) = [x1, x2]

X1X

o
—
—
—
—
—
—
—
—
—
—
— -
—
—

f(x) = [x1, X2, X12, X22, X1X2]

» “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n?) instead of O(n - (num feats))

http://ciml.info/dl/v0 99/ciml-v0 99-ch11.pdf
https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM

https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM
http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
» Pick a model / learning algorithm

» Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)

What are features?

» Don’t have to be just bag-of-words

count(“boring”)
count(“not boring”)
f (:L‘) __ | length of document
author of document

» More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, ...

Naive Bayes

Naive Bayes

» Data point x = (x4, ...,x,),label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule

P(y|lx) =

x P(y)P(z]y) for finding the max

(“ -) . .
N Nalve™ assumption:

P(CC) - _constant: irrelevant

(%))

— P(y) Hp(xi‘y) conditional independence

argmax, P(y|r) = argmax, log P(y|r) = argmax,,

log P(y +ZlogP z;|y)

15

Why the log?

P(y])j;gew) — P(y) ﬁp(l’z"y)

1=1

P(y|r) =

» Multiplying together lots of probabilities

» Probabilities are numbers between 0 and 1

Q: What could go wrong here?

Why the log?

» Problem — floating point underflow

S | exponent significand
1 11 bits 52 bits
Largest= 1.111.x2*19%

| x
Smallest = 1.000.. X 2 1044 -

0.0000001 -16.118095651

» Solution: working with probabilities in log space I I
0.00001 -11.512925
0.0001 -9.210340
0.001 -6.907755
0.01 -4.605170

0.1 -2.302585

Maximum Likelihood Estimation

» Data points (x;, 1) provided (j indexes over examples)
» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [P(y)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 —p)

j=1
» Easier: maximize log likelihood og likelihood
™
Z 10g P(yj) — 3 1ng -+ 1Og(1 _ p) P(H).= 0.75
j=1 0 1 P
‘,/" h
» Maximum likelihood parameters for binomial/ /

multinomial = read counts off of the data + normalize

http://fooplot.com/

http://fooplot.com/

Maximum Likelihood Estimation

» Data points (x;, 1) provided (j indexes over examples)
» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example

» Equivalent to maximizing logarithm of data likelihood:

(4L

Zlog P(y;,z;) Z

71=1 71=1

log P(y;) ZlogP 5'732?17)]

Maximum Likelihood for Naive Bayes

--

" this movie was great! would watch again 49 1

S - - P =35 ~_

. | liked it well enough for an action flick + X prior

| expected a great film and left happy + P(—) = 5 —

brilliant directing and stunning visuals + 1

- that film was awful, I'll never watch again [| Plgreat|+) = 2 N word

T - - —% 1 likelihood

i | didn’t really like that movie . P(great|—) = - v

. dry and a bit distasteful, it misses the mark[— |] & pmmeenneenneas :

great potential but ended up being a flop [— P(ylz) o< P(y) H P(x;|y)
__ I 1=1 I

--

Nalve Bayes: Learning

--

--

» Learning = estimate the parameters of the model

» Prior probability — P(+) and P(-):
» fraction of + (or -) documents among all documents

» Word likelihood — P(wordi| +) and P(wordi| -):

» number of + (or -) documents wordi is observed, divide by the total
number of documents of + (or -) documents

This is for Bernoulli (binary features) document model!

22

Zero Probability Problem

» What if we have seen no training document with the word “fantastic”
and classified in the topic positive?

» Laplace (add-1) Smoothing
» Word likelihood — P(wordi| +) and P(wordi| -):
» frequency of word; is observed plus 1, divide by ...

Naive Bayes

» Bernoulli document model:
» A document is represented by binary features

» Feature value be 1 if the corresponding word is represent in
the document and O if not

» Multinominal document model”
» A document is represented by integer elements
» Feature value is the frequency of that word in the document

» See textbook and lecture note by Hiroshi Shimodaira linked below

for more details \
23

Nalve Bayes: Summary

» Model @

mn

P(z,y) = P(y) | | P(xily) (@)

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

» Alternatively: log P(y = +|x) — log P(y = —|x) > 0

Linear model!

Ply =+) ilogp(miy:ﬂ >0 § w! (x)>0§

Py = —)
» Learning: maximize P(z,y) by reading counts off the data

& log

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

P(Zpbeautiful|+) = 0.1 P(xpeautitul] —) = 0.01
P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

» Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

» Discriminative models model P(y|x) directly (SVMs, most neural networks, ...)

Generative vs. Discriminative Models

» Generative models: P(z,y)
» Bayes nets / graphical models

» Some of the model capacity goes to explaining the distribution of x;
prediction uses Bayes rule post-hoc

» Can sample new instances (x, y)

» Discriminative models: P(y|x)
» SVMs, logistic regression, CRFs, most neural networks
» Model is trained to be good at prediction, but doesn’t model x

» We'll come back to this distinction throughout this class

Break!

Logistic Regression

Logistic Regression

-

P(y = +|z) = logistic(w ' x))= T

Ply 1) - P wi) /
1+ exp(> ., wiz;) e

» Decisionrule: Py =+|z) >05<w' >0

» To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features

--

of 0fdg 9f(g) dg(x)
O0r 0OgOx Og O

--

Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;sz-(yj _ P(yj — +|;(;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

» Gradient of w; on negative example — rii(—P(y; = +|x;))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;, which will decrease P(+)

» Can combine these gradients as aﬁ(;i’ Yi) =z(y; — P(y; = 1|z;))

Gradient Decent

log likelihood of data P(y|x) data points (j)

N\ /
0L(xj,Y;) _ ri(y; — P(y; = 1|z;))

» Can combine these gradients as

ow
» Training set log-likelihood: L(w)
| OL(w) (0L OL 0L
» Gradient vector: A (8w1’ 8w2""’8wn>

Gradient Decent

» Gradient decent (or ascent) is an iterative optimization algorithm for finding
the minimum (or maximum) of a function.

Repeat until convergence {
1 Initial "

~__— Gradient

/
/
/
]

fromj=1tom
OL(w)
W= W —

9,
| /o

learning rate (step size)

33

J(6)

Too low

Learning Rate

Just right Too high

1(0) J(6)

.———""'———’—‘——“J'

A small learning rate
requires many updates

before reaching the
minimum point

The optimal learning

rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates

which lead to divergent
‘behaviors

Credit: Jeremy Jordan

Regularization

» Regularizing an objective can mean many things, including an L2-

norm penalty to the weights: m
Loy - Alwld
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» Early stopping
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping

Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmaxyP(y\x) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-likelihood

Logistic Regression vs. Nalve Bayes

Both are (log) linear models T
 Both are(log w f(z)

» Logistic regression doesn’t assume conditional independence of features
» Weights are trained independently
» Can handle highly correlated overlapping features

» Naive Bayes assume conditional independence of features
» Weights are trained jointly

Perceptron/SVM

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: ' 1 > () Logistic Regression

» If incorrect: if positive, o« w+2 w w+a(l— Py =1|z))

if negative, y «+ w — =z w <+ w — Py = 1|x)

» Algorithm is very similar to logistic regression

» Guaranteed to eventually separate the data if the data are separable

http://ciml.info/dl/v0 99/ciml-v0 99-ch04.pdf

http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

History |edit]

: l
¥ w=T =t =1 el we) i
¥ =l =i w=l W=l -

¥y ow
—

. —~eee LR R ————
o ¥

Wi ¥ W ¥ meed M= i wped Ml Seed

i B e
'

k
!
:
4
i
.
I
i
:
v
I
I
i
!
|
B

Ty
W

Mark | Perceptron machine, the first =
implementation of the perceptron
algorithm. It was connected to a
camera with 20x20 cadmium sulfide
photocells to make a 400-pixel image.
The main visible feature is a patch
panel that set different combinations of
input features. To the right, arrays of
potentiometers that implemented the
adaptive weights.[?1213

original text are shown and corrected.

Perceptron

See also: History of artificial intelligence § Perceptrons and the attack on connectionism, and Al winter § The
abandonment of connectionism in 1969

The perceptron algorithm was invented in 1958 at the Cornell Aeronautical Laboratory by Frank Rosenblatt,®! funded by the United States Office of Naval Research.[*!

The perceptron was intended to be a machine, rather than a program, and while its first implementation was in software for the IBM 704, it was subsequently
implemented in custom-built hardware as the "Mark 1 perceptron". This machine was designed for image recognition: it had an array of 400 photocells, randomly
connected to the "neurons". Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors.[21193

In a 1958 press conference organized by the US Navy, Rosenblatt made statements about the perceptron that caused a heated controversy among the fledgling Al
community; based on Rosenblatt's statements, The New York Times reported the perceptron to be "the embryo of an electronic computer that [the Navy] expects will
be able to walk, talk, see, write, reproduce itself and be conscious of its existence."*]

Although the perceptron initially seemed promising, it was quickly proved that perceptrons could not be trained to recognise many classes of patterns. This caused the
field of neural network research to stagnate for many years, before it was recognised that a feedforward neural network with two or more layers (also called a multilayer
perceptron) had greater processing power than perceptrons with one layer (also called a single layer perceptron).

Single layer perceptrons are only capable of learning linearly separable patterns. For a classification task with some step activation function a single node will have a
single line dividing the data points forming the patterns. More nodes can create more dividing lines, but those lines must somehow be combined to form more complex
classifications. A second layer of perceptrons, or even linear nodes, are sufficient to solve a lot of otherwise non-separable problems.

In 1969 a famous book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes of network to learn an XOR
function. It is often believed (incorrectly) that they also conjectured that a similar result would hold for a multi-layer perceptron network. However, this is not true, as
both Minsky and Papert already knew that multi-layer perceptrons were capable of producing an XOR function. (See the page on Perceptrons (book) for more
information.) Nevertheless, the often-miscited Minsky/Papert text caused a significant decline in interest and funding of neural network research. It took ten more years
until neural network research experienced a resurgence in the 1980s. This text was reprinted in 1987 as "Perceptrons - Expanded Edition" where some errors in the

The kernel perceptron algorithm was already introduced in 1964 by Aizerman et al.[’! Margin bounds guarantees were given for the Perceptron algorithm in the general non-separable case first by Freund and
Schapire (1998),!'] and more recently by Mohri and Rostamizadeh (2013) who extend previous results and give new L1 bounds.!®!

The perceptron is a simplified model of a biological neuron. While the complexity of biological neuron models is often required to fully understand neural behavior, research suggests a perceptron-like linear
model can produce some behavior seen in real neurons.’!

PhD 1956 from Cornell

Support Vector Machines (extracurricular)

» Many separating hyperplanes — is there a best one?

Support Vector Machines (extracurricular)

» Many separating hyperplanes — is there a best one?

~
~
~
~
~
~§
~

"~ I
~~~
- ~~~ +
~ ~~~ I
~ “~~ I
~ RS
~ +
~ ..
b @&
~
~ ~
~~~
~
o ~ "~~
~~~~ \\ ~.
~~~ \
~~~ -
S
~o ~, o
~ ~~~
~ ~~~
~ S
~ “sel
*.~ ~ ~~~
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~ S
- ~
O-.. ~ mMargin
- S ~
~o ~
RS

§~~
~

Support Vector Machines (extracurricular)

» Constraint formulation: find w via following quadratic program:
° ° ° 2
Minimize [[qp||3 minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs (extracurricular)

Tr
Minimize) |lqp]|2 + Z@'
j=1

StV (2 - D) 21—
» The ¢, are a "fudge factor” to make all constraints satisfied
» Take the gradient of the objective:

Y . 0 |

» Looks like the perceptron! But updates more frequently

LR, Perceptron, SVM (extracurricular)

» Gradients on Positive Examples

L b E bR bR R EEEEEbE 4
- Logistic regression 5 .
2(1 — logistic(w ' z)) 3
ZZE 25 L
g
Perceptron o
T _—

/|Hinge (SVM)

SVIVI (ignoring regularlzer) 0‘1|)-'

rif w' r <1, else 0

Perceptron |,

Logistic

-2 -1 0

*gradients are for maximizing things, which is why they are flipped

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features # of | frequency or [[NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [806 | 808] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Method RT-s MPQA

MNB-uni 779 85.3

MNB-bi 79.0 86.3| «—— Naive Bayes is doing well!
SVM-uni 762 86.1

SVM-bi 777 86.7

NBSVM-uni | 78.1 85.3

NBSVM_bi 104 863 Ng and Jordan (2002) — NB
RAE 76.8 857 can be better for small data

RAE-pretrain | [77.7 86.4

Voting-w/Rev. | 63.1 81.7
Rule 62.9 81.8
BoF-noDic. 757 81.8 Before neural nets had taken off
BoF-w/Rev. 76.4 84.1
Tree-CRF 77.3 86.1

BoWSVM - —
Kim (2014) CNNs |81.5 89.5 Wang and Manning (2012)

— results weren’t that great

Recap

B o exp (D wimg)
y = 1jz) = (1 +exp (3o wiz;))

Decisionrule: py, = 1]2) > 05 < w' 'z >0

» Logistic regression: P(

Gradient (unregularized): z(y — P(y = 1|x))

» Logistic regression, perceptron, and SVM are closely related

» All gradient updates: “make it look more like the right thing and less like the
wrong thing”

Optimization — next time...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better), e.g., Newton’s method,
Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective

QA Time

DO YOU HAVE

ANY QUESTIONS?

