CNNs and Neural CRFs

Wel Xu

(many slides from Greg Durrett, Stanford 23 I n)



Recall: RNNSs

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)
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Recall: LSTM & GRU
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Recall: RNN Abstraction
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the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors



This Lecture

» CNNSs

» CNNs for Sentiment, Entity Linking

» Neural CRFs



Administrivia

» Reading — Goldberg 9 (CNN); Eisenstein 3.4, 7.6

A Primer on Neural Network Models
for Natural Language Processing

Yoav Goldberg
Draft as of October 5, 2015.

The most up-to-date version of this manuscript is available at http://www.cs.biu.
ac.il/~yogo/nnlp.pdf. Major updates will be published on arxiv periodically.

I welcome any comments you may have regarding the content and presentation. If you
spot a missing reference or have relevant work you’d like to see mentioned, do let me know.
first.last@gmail

Abstract

Over the past few years, neural networks have re-emerged as powerful machine-learning
models, yielding state-of-the-art results in fields such as image recognition and speech
processing. More recently, neural network models started to be applied also to textual
natural language signals, again with very promising results. This tutorial surveys neural
network models from the perspective of natural language processing research, in an attempt
to bring natural-language researchers up to speed with the neural techniques. The tutorial
covers input encoding for natural language tasks, feed-forward networks, convolutional
networks, recurrent networks and recursive networks, as well as the computation graph
abstraction for automatic gradient computation.




CNNSs



Convolutional Neural Networks

Image Maps
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LeCun et al. (1998)



A Bit of History

» The Mark | Perceptron machine was the first implementation of the
perceptron algorithm.
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» Perceptron (Frank Rosenblatt, 1957) LRSS
» Artificial Neuron (McCulloch & Pitts, 1943)

McCulloch Pitts Neuron

) e _ Perceptron
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The IBM Automatic Sequence Controlled Calculator, called Mark | by Harvard University’s staff.
It was designed for image recognition: it had an array of 400 photocells, randomly connected to

the "neurons”. Weights were encoded in potentiometers, and weight updates during learning
were performed by electric motors.
https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_al&feature=emb_logo



https://www.youtube.com/watch?time_continue=71&v=cNxadbrN_aI&feature=emb_logo

A Bit of History

» Adaline/Madeline - single and multi-layer “artificial neurons”
(Widrow and Hoff, 1960)
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A Bit of History

» First time back-propagation became popular (Rumbelhart et al, 1986)

Learning representations
by back-propagating errors

David E. Rumelhart®, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedurel.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

t To whom correspondence should be addressed.

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,
¥i, of the units that are connected to j and of the weights, wy,
on these connections

xj=ZYini (1)

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of thé
opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y;, which is a non-linear
function of its total input
1

T 1+e S

Vi (2)

© 1986 Nature Publishing Group



A Bit of History

activities below 0.2.

A set of
corresponding
weights
W2 We
w w

Fig. 5 A synchronous iterative net that is run for three iterations
and the equivalent layered net. Each time-step in the recurrent net
corresponds to a layer in the layered net. The learning procedure
for layered nets can be mapped into a learning procedure for
iterative nets. Two complications arise in performing this mapping:
first, in a layered net the output levels of the units in the intermedi-
ate layers during the forward pass are required for performing the
backward pass (see equations (5) and (6)). So in an iterative net
it is necessary to store the history of output states of each unit.
Second, for a layered net to be equivalent to an iterative net,
corresponding weights between different layers must have the same
value. To preserve this property, we average dE/aw for all the
weights in each set of corresponding weights and then change each
weight in the set by an amount proportional to this average gradient.
With these two provisos, the learning procedure can be applied
directly to iterative nets. These nets can then either learn to perform
iterative searches or learn sequential structures®.

» First time back-propagation became popular (Rumbelhart et al, 1986)

To break symmetry we start with small random weights.
Variants on the learning procedure have been discovered
independently by David Parker (personal communication) and
by Yann Le Cun’.

One simple task that cannot be done by just connecting the
input units to the output units is the detection of symmetry. To
detect whether the binary activity levels of a one-dimensional
array of input units are symmetrical about the centre point, it
is essential to use an intermediate layer because the activity in
an individual input unit, considered alone, provides no evidence
about the symmetry or non-symmetry of the whole input vector,
so simply adding up the evidence from the individual input
units is insufficient. (A more formal proof that intermediate
units are required is given in ref. 2.) The learning procedure
discovered an elegant solution using just two intermediate units,
as shown in Fig. 1.

Another interesting task is to store the information in the two
family trees (Fig. 2). Figure 3 shows the network we used, and
Fig. 4 shows the ‘receptive fields’ of some of the hidden units
after the network was trained on 100 of the 104 possible triples.

So far, we have only dealt with layered, feed-forward
networks. The equivalence between layered networks and recur-
rent networks that are run iteratively is shown tn Fig. 5.

The most obvious drawback of the learning procedure is that
the error-surface may contain local minima so that gradient
descent is not guaranteed to find a global minimum. However,
experience with many tasks shows that the network very rarely
gets stuck in poor local minima that are significantly worse than
the global minimum. We have only encountered this undesirable
behaviour in networks that have just enough connections to
perform the task. Adding a few more connections creates extra
dimensions in weight-space and these dimensions provide paths
around the barriers that create poor local minima in the lower
dimensional subspaces.

©1986 Nature Publishing Group



A Bit of History

» Long Short-term Memory (Hochreiter & Schmidhuber, 1997)

netc st=st+ gyinj

& Ti0L

ci y'“j

y
w, /] /I\r\netinj W, /1 /?,\netoutj

Figure 1: Architecture of memory cell c; (the box) and its gate units in;,out;. The self-recurrent
connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the basis of

the “constant error carrousel” CEC. The gate units open and close access to CEC. See text and
appendixz A.1 for details.
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A Bit of History

Image Maps
Input
K x \\\Nﬁm
/x \ "
Convolutions Fully Connected
Subsampling

LeCun et al. (1998)



A Bit of History

i-th output = P(w, = i| context)

sofimax

/ / most | computation here \

Table |~ ~. Matrix C R
look_u ‘wmesssscscscsscsscssscsscsshene T T Y TR A R LT .
i C P shared parameters
! 4 across words -
index for w,_,..1 index for w;_» index for w,_,

Figure 1: Neural architecture: f(i,w;_1, -+ ,Wi_ps1) =2(i,C(w;_1), - ,C(W;_n+1)) where g is the

neural network and C(i) is the i-th word feature vector.
Bengio et al. (2003)



A Bit of History

» Reinvigorated research in deep learning (Hinton & Salakhutdinov, 2006)
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Convolutional Neural Networks

» AlexNet - one of the first strong results

» more filters per layer as well as stacked convolutional layers

» use of ReLU for the non-linear part instead of sigmoid or Tanh

convolutional fully connected layers

layers

FCo @ FC7/

> o |>
3
1000

4096 4096

Krizhevsky et al. (2012)



ImageNet - Object Recognition
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Russakovsky et al. (2012)



ImageNet - Object Recognition

28% AlexNet, 8 layers

/ ZF, 8 layers

/
r

/ VGG, 19 layers
/ / GoogleNet, 22 layers
ResNet, 152 layers

/ / " (Ensemble)
o SENet

100% accuracy and reliability not realistic

N Traditional computer vision
BN Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017



Convolutional Layer

» Applies a filter over patches of the input and returns that filter’s activations

» Convolution: take dot product of filter with a patch of the input

image:nxnxk filterrmxmxk

5 sum over dot products

m—1m—1

activation;; = Z Z image(t + 0, ] + Jo) - filter(iy, jo)
io=0 jo=0

K "~ offsets
Each of these cells is a vector with multiple values
Images: RGB values (3 dim)



Convolutional Layer

» An animated example: k = 1, and a filter of size 3x3.

4]

Convolved
Feature

Image



Convolutional Layer

» Applies a filter over patches of the input and returns that filter’s activations

» Convolution: take dot product of filter with a patch of the input

image:nxnxk filterrmxmxk activations:(n-m+1)x(h-m+1)x1

.f/_\




Convolutions for NLP

» Input and filter are 2-dimensional instead of 3-dimensional

sentence: n words x k vec dim  filter- m x k activations: (n-m+ 1) x 1

the movi m

L— vector for each word

» Combines evidence locally in a sentence and produces a new (but still
variable-length) representation




Compare: CNNs vs. LSTMs

O(n)xc nXZC

r c filters, BiLSTM with

_ m X k each ’.j .J,IJ hidden size ¢

n x k

the movie was good the movie was good

» Both LSTMs and convolutional layers transform the input using context

» LSTM: “globally” looks at the entire sentence (but local for many problems)

» CNN: local depending on filter width + number of layers



CNNs for Sentiment



CNNs for Sentiment Analysis

1 P(y|x)
W projection + softmax
I c-dimensional vector
/ max pooling over the sentence
N XC » Max pooling: return the max
, activation of a given filter
r c filters, .
over the entire sentence;
B | m x k each . .
like a logical OR (sum
n x k pooling is like logical AND)

the movie was good



Understanding CNNs for Sentiment

the | @ee) @ee | 0.03
movie (...) (...) 002 “good” filter output
was(nco)(ooo) 0.1 max =1.1

--------------------------------

» Filter “looks like” the things that will cause it to have high activation



Understanding CNNs for Sentiment

movie (0 00 0.02
was (eee) 0.1 max = 1.1
good (e ee) 1.1
aan 0.0
bad”; ~ @e®) | —s 0.1
okay’ | @e® i—— 03




Understanding CNNs for Sentiment

-------------------------------- SRR
movie (000) 0,02 1.1
Features for
was (eee) 0.1 max = 1.1 0.1 e
classification layer
good (eee) 1.1 0.31 (or more NN layers)
. (e0®0@) 0.0 0.1
e : \____/
“bad” (eee i —» 0.1

» Takes variable-length input and turns it into fixed-length output

» Filters are initialized randomly and then learned



Understanding CNNs for Sentiment

the (eee@) 0.03
movie (eee) 0.02
was (eee) 0.1 max = 1.8

» Word vectors for similar words are similar, so convolutional filters will
have similar outputs



Understanding CNNs for Sentiment

the @eoe®) (000 5}0.03 not good

 TPVIE ey =Y ) 0.14

B RRatt T O 201 | max = 1.5
. hotl (eee) (@00 ;}15

good (eee) (e@6) EJOO

» Analogous to bigram features in bag-of-words models

» Indicator feature of text containing bigram <-> max pooling of a filter that
matches that bigram



What can CNNs learn?

» CNNs let us take advantage of word similarity

really not very good vs. really not very enjoyable

» CNNSs are translation-invariant like bag-of-words

The movie was bad, but blah blah blah ... vs. ... blah blah blah, but the movie was bad.

» CNNs can capture local interactions with filters of width > 1

[t was not good, it was actually quite bad vs. it was not bad, it was actually quite good



Deep Convolutional Networks

» Low-level filters: extract low-level features from the data

m :‘fé-?; W
M il = 1l
ac T3 1y

' Zeller and Fergus (2014)



Deep Convolutional Networks

» High-level filters: match larger and more “semantic patterns”

Zeiler and Fergus (2014)



CNNs: Implementation

» Input is batch size x n x k matrix, filters are ¢ x m x k matrix (c filters)

» Typically use filters with m ranging from 1 to 5 or so (multiple filter
widths in a single convnet)

» All computation graph libraries support efficient convolution operations

CLASS toxch.nn.Convld(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode="'zeros")

Applies a 1D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, L) and output (N, Cyyt y Lout ) can be
precisely described as:

Cin—1
out(N;, Cout,; ) = bias(Cous, ) + Z weight(Coy, , k) x input(V;, k)
k=0

where % is the valid cross-correlation operator, N is a batch size, C' denotes a number of channels, L is a length of signal
sequence.

e stride controls the stride for the cross-correlation, a single number or a one-element tuple.

e padding controls the amount of implicit zero-paddings on both sides for padding number of points.



CNNs for Sentence Classification

» Question classification,
sentiment, etc.

» Conv+pool, then use feedforward
layers to classify

» Can use multiple types of input
vectors (fixed initializer and
learned)

e

the movie was good

Kim (2014)



CNNs for Sentence Classification
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Kim (2014)



Sentence Classification

movie review
sentiment SU bJECﬁVity/ObJECﬁVity

detection prOduct
/ / reviews
v

™

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
hT T f ' -+ + -

CNN-multichannel 81.1 | 474 | 88.1 | 93.2 | 92.2 | 85.0 | 89.4

NBSVM (Wang and Manning, 2012) 79.4 — — 93.2 — | 81.8 | &86.3

guestion type
classification

» Also effective at document-level text classification
Kim (2014)



Entity Linking

» CNNs can produce good representations of both sentences and
documents like typical bag-of-words features

» Can distill topic representations for use in entity linking

cycling domain

that they had disqualified Armstrong
from his seven consecutive

Lance Armstrong

geopolitical domain™

—

Armstrong County



Although he originally won the

event, the United States Anti-
Doping Agency announced in
August 2012 that they had

disqualified [Armstrong]from
his seven consecutive Tour de
France wins from 1999-2005.

NS

Document topic vector

P(y|x) = softmax(s)

Entity Linking

an American former

o

Lance Edward Armstrong is

professional road cyclist

Armstrong County
IS @ county In
Pennsylvania...

Article topic vector ar,ance

N T

STLance — d - U1, ance

Article topic vector
A County

SCounty — d - ACounty

Francis-Landau et al. (2016)



Neural CRF Basics



NER Revisited

B-PER I-PER O O O0:; B-LOC O O OB-ORG O O

Barack Obama will travel toi Hangzhou'today for the G20 meeting .

PERSON ORG

» Features in CRFs: I[tag=B-LOC & curr word=Hangzhoul],
l[tag=B-LOC & prev word=to], |[tag=B-LOC & curr prefix=Han]

» Linear model over features

» Downsides:
» Lexical features mean that words need to be seen in the training data

» Linear model can’t capture feature conjunctions as effectively (doesn’t
work well to look at more than 2 words with a single feature)



LSTMs for NER

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

B-PER |I-PER O O B-LOC

e

Barack Obama will travel to Hangzhou

» Transducer (LM-like model)

» What are the strengths and weaknesses of this model compared to CRFs?



LSTMs for NER

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .

PERSON ORG
B-PER I-PER O O O B-LOC

I I I i I I
e o
Barack Obama will travel to Hangzhou

» Bidirectional transducer model

» What are the strengths and weaknesses of this model compared to CRFs?



Recall: Sequential CRFs
1 n n

» Model:  p(y|x) = - HGXP(@(%—L%)) HexP(@be(yivivX))

n

» Normalizing constant 7z = " TT exp(¢: (yi—1. v:)) [ [ exp(¢e (yi, 4. %))

[ostotelo



Recall: Sequential CRFs

» Inference: use Viterbi algorithm  p(y - Ix) = max P(y|x)
Y1seeeyYn

» Learning: run forward-backward to compute marginals

P(y; = s|x) = > P(y|x)

Y1y-- - Yi—1,Yi415---9Yn

P(y; = s1,yi11 = s2|x) , then update gradient




Neural CRFs

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .

Oo0oEo0o000

By

PERSON

Barack Obama will travel to Hangzhou

» Neural CRFs: bidirectional LSTMs (or some NN) compute emission
potentials, capture structural constraints in transition potentials



Neural CRFs
. . oy

P(y|x) = %HGXP(@(%—h%)) HGXP(%(%%X)) @ B @ B ﬂ-@

Pe | B

» Conventional: ¢ (y;,1,X) = wae (Yi, 1, X)

» Neural: %(yz‘, 7, X) — W;f(z, X) W is a num tags x len(f) matrix

» f(i, x) could be the output of a feedforward neural network looking at the
words around position i, or the ith output of an LSTM, ...

» Neural network computes unnormalized potentials that are consumed
and “normalized” by a structured model|

» Inference: compute f, use Viterbi



Computing Gradients

n

n ¢t
P(yb) = o [T exp(6(si1,50) T expl@e (i) D@é}
1=2 1=1 ¢e . .

» Conventional: ¢ (y;,1,X) = wae (Yi, 1, X)

» Neural: Ge(Yi, 1, X) = W;f(Z,X)
oL
8¢e,z’ B

- . 00 .
» For linear model: fﬂ _ fe,z'(yi,%X

[/

—P(y; = s|x) + I|s is gold| “error signal”, compute with F-B

> chain rule say to multiply
) together, gives our update

» For neural model: compute gradient of phi w.r.t. parameters of neural net



Neural CRFs

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON LOC ORG

%‘D%‘D%D%‘D%D% 2) Run forward-backward
3) Compute error signal
By 3 comae o
4) Backprop (no knowledge

Barack Obama will travel to Hangzhou of sequential structure

required)




FFNN Neural CRF for NER

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

¢e — Wg(Vf(X, Z))

f(x,7) = |emb(x;_1),emb(x;),emb(x;11)]

previous word curr word next word

to Hangzhou today



LSTMs for NER

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

B-PER I-PER O O O B-LOC

-
PE
I "I "l "I
Barack Obama will travel to Hangzhou

» How does this compare to neural CRF?



“NLP (Almost) From Scratch”

Input Window

Approach POS | CHUNK | NER | SRL Text cat sat of the mat
(PWA) (Fl) (Fl) (Fl) Featl.lre 1 wi ws ... wh
Benchmark Systems | 97.24 | 9429 | 89.31 | 77.92 Featwe K wK wk  wk
v
Lookup Table v
I\ o
NN+WLL+LM]1 97.05 | 9191 | 85.68 | 58.18 :
NN+SLL+LM]1 97.10 | 93.65 | 87.58 | 73.84 LTe A
NN+WLL+LM?2 97.14 | 92.04 | 86.96 | 58.34 . —concat 1§
NN+SLL+LM?2 9720 | 93.63 | 88.67 | 74.15 Ny «
» WLL: independent classification; SLL: neural CRF .40 N Y
Y GV

» LM2: word vectors learned from a precursor _
to word2vec/GloVe, trained for 2 weeks (!) on i xd s 2

Wikipedia Collobert, Weston, et al. 2008, 2011




CNN Neural CRFs

» Append to each word vector an

: embedding of the relative position of
that word
/WerooHFFN
o< o< < N\

» Convolution over the sentence
produces a position-dependent
representation

today
for

EI Hangzhou
=
B

travel to Hangzhou today for



CNN NCRFs vs. FFNN NCRFs

Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 | 77.92

Window Approach
NN+SLL+LM2 9720 | 93.63 | 88.67 | -

Sentence Approach
NN+SLL+LM2 97.12 | 93.37 | 88.78 | 74.15

» Sentence approach (CNNs) is comparable to window approach
(FFNNs) except for SRL where they claim it works much better

Collobert and Weston 2008, 2011



Neural CRFs with LSTMs

» Neural CRF using character LSTMSs to compute word representations

( (—
Embedding fro m ] [ evac Je—  Lookuo tabl
........... + @ oo i

CRF Layer <
-
(—
(_g
L @
-§ Embedding fro m y
g characters
g
S
@) /
-
Bi-LSTM -

eeeeeee NM),, o 9?23

Chiu and Nichols (2015), Lample et al. (2016)




Neural CRFs with LSTMs

» Chiu+Nichols: character CNNs Model Fq
instead of LSTMSs Collobert et al. (2011)* 89.59
[.in and Wu (2009) 83.78
. _ Lin and Wu (2009)* 90.90
> Lm/Passos{Luo. use exjcernal Huang et al. (2015)* 90,10
resources like Wikipedia Passos et al. (2014) 90.05
Passos et al. (2014)* 90.90
: Luo et al. (2015)* + gaz 39.9
» LSTM-CRF captures the important Luo et al. (2015)* + gaz + linking | 91.2
aspects of NER: word context Chiu and Nichols (2015) 90.69
(LSTM), sub-word features Chiu and Nichols (2015)* 90.77
(character LSTMs), outside LSTM-CREF (no char) 90.20
LSTM-CRF 90.94

knowledge (word embeddings)

Chiu and Nichols (2015), Lample et al. (2016)



Takeaways

» CNNs are a flexible way of extracting features analogous to bag of n-
grams, can also encode positional information

» All kinds of NNs can be integrated into CRFs for structured inference. Can
be applied to NER, other tagging, parsing, ...



