
CS 4650 (Spring 2021) HW3 – LSTM Model

February 2021

Instruction

1. We will be using Gradescope to collect your assignments. Please carefully read the following instructions
for submitting to Gradescope.

(a) Each subproblem must be submitted on a separate page. When submitting to Gradescope (under
HW3 Writing), make sure to mark which page(s) correspond to each problem or subproblem.

(b) For the coding problem, please upload your jupyter notebook (with all the outputs and your
answers present) in a zip under HW3 Programming on Gradescope.

(c) Note: this is a large class and Gradescope’s assignment segmentation features are essential. Failure
to follow these instructions may result in parts of your assignment not being graded. We will not
entertain regrading requests for failure to follow instructions.

2. LATEX solutions are strongly encouraged (solution template available on the class website), but scanned
handwritten copies are also acceptable. Hard copies are not accepted.

3. We generally encourage collaboration with other students. You may discuss the questions and potential
directions for solving them with another student. However, you need to write your own solutions and
code separately, and not as a group activity. Please list the students you collaborated with on the
submission site.

1



1 Word Embeddings (10 points)

In the class, we focused on discussing word2vec as one of the word embedding techniques. Here, we will
consider a simpler alternative method for learning word embeddings. Consider the term-document matrix
for five words in three documents shown in Table 1. The whole document set has N = 20 documents, and
for each of the five words, the document frequency dft is shown in Table 2.

Term Doc 1 Doc 2 Doc 3

water 9 2 0
current 5 7 8
electricity 0 3 8
flow 5 4 6
swim 4 0 0

Table 1: Term Document Matrix

Term DF
water 8
current 17
electricity 7
flow 14
swim 4

Table 2: Document Frequency

(a) Compute the tf-idf weights according to the definitions in Jurafsky and Martin’s Textbook (Chapter
6; Equations 6.12-6.14) for each of the words “water”, “current”, “electricity”, “flow” and “swim” in
Doc 1, Doc 2, and Doc 3. (5 points)

(b) Use the tf-idf weight you got in (a) to represent each document with a vector, and calculate the cosine
similarities between these three documents. (3 points)

(c) Stemming refers to reducing a word to its root word by removing its suffix, e.g. “swimming” to “swim”.
Which one of the methods, word2vec and tf-idf, do you think would benefit from stemming? Explain
why. (2 points)

2



2 LSTM (10 points)

Here are the defining equations for a Long Short-Term Memory (LSTM) cell:

it = σ(W(i)xt + U(i)ht−1)

ft = σ(W(f)xt + U(f)ht−1)

ot = σ(W(o)xt + U(o)ht−1)

c̃t = tanh(W(c)xt + U(c)ht−1)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

(1) Recall that ◦ denotes element-wise multiplication and that σ denote the sigmoid function σ(a) = 1/(1 +
e−a). ht, ct and xt are column vectors. Assume that the ht are of dimension dh, that ct are of dimension dc
and that the xt are of dimensions dx. What are the dimensions of W (i), U (i), W (f), U (f), W (o), U (o), W (c),
and U (c)? Define clearly which numbers are rows and columns. (8 points)

W(i):

U(i):

W(f):

U(f):

W(o):

U(o):

W(c):

U(c):

(2) True or False. it, ft and ot can be viewed as probability distributions (i.e., their entries are non-negative
and their entries sum to 1). JUSTIFY YOUR ANSWER. (2 points)

3



3 Programming: LSTM POS-Tagger (30 points)

In this problem, you will implement two LSTM part-of-speech tagging models, and carry out hyper-parameter
tuning. Write down your answers in the space provided in the notebook. When making a submission, make
sure all the outputs and your answers are present in the notebook.

(a) Implement a basic LSTM POS-tagger by completing the skeleton code provided in BasicPOSTagger

in the notebook. Next, implement the training procedure. Under the default hyper-parameter setting,
after 5 epochs you should be able to get at least 75% accuracy on the validation set.

Compute the top-10 most frequent types of errors (e.g. 10 instances where the model labeled NN as
VB) that the model made in labeling the data in the validation set, and report them in the notebook.
What kinds of errors did the model make and why do you think it made them? (10 points)

(b) In order to improve your model performance, try the hyper-parameter tuning. Specifically, you are
expected to make some modifications on EMBEDDING DIM, HIDDEN DIM, and LEARNING RATE. You will
receive 50%/75%/100% credit for this section if your model, after being trained for 10 epochs, is able
to achieve 80%/85%/90% accuracy on the validation set. (10 points)

(c) Word-level information is useful for part-of-speech tagging, but what about character-level information?
For instance, the past tense of English verbs is marked with the suffix -ed, which can be captured by
a sequential character model.

Implement the character-level LSTM POS-tagger by completing CharPOSTagger. The key idea is to
use the character-level information to augment word embeddings. Under the default hyper-parameter
setting, after 5 epochs you should be able to get at least 85% accuracy on the validation set.

Compute the top-10 most frequent types of errors (e.g. 10 instances where the model labeled NN as
VB) that the model made in labeling the data in the validation set, and report them in the notebook.
What kinds of errors did the model make and why do you think it made them? Compare your findings
with part (a). (10 points)

4


