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Recap: Language Model

¡ Unigram model: ! "# ! "$ ! "% …!("()

¡ Bigram model: ! "# ! "$|"# ! "%|"$ …!("(|"(+#)

¡ Trigram model:

! "# ! "$|"# ! "%|"$, "# …!("(|"(+#"(+$)

¡ N-gram model:

! "# ! "$|"# … !("(|"(+#"(+$ …"(+-)
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Recap: How To Evaluate

¡ Extrinsic: build a new language model, use it for some task (MT, ASR, etc.)

¡ Intrinsic: measure how good we are at modeling language
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Difficulty of Extrinsic Evaluation

¡ Extrinsic: build a new language model, use it for some task (MT, etc.)

¡ Time-consuming; can take days or weeks

¡ So, sometimes use intrinsic evaluation: perplexity

¡ Bad approximation

¡ Unless the test data looks just like the training data

¡ So generally only useful in pilot experiments

4



Recap: Intrinsic Evaluation

¡ Intuitively, language models should assign high probability to real language they 
have not seen before
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Evaluation: Perplexity

¡ Test data: ! = #$, #&, … , #()*+
¡ Parameters are not estimated from S

¡ Perplexity is the normalized inverse probability of S

, ! = -
./$

()*+
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()*+
log& ,(#.)

6 = 1
8 5

./$

()*+
log& ,(#.)

6

perplexity = 2:;



Evaluation: Perplexity

¡ Sent is the number of sentences in the test data
¡ M is the number of words in the test corpus

¡ A better language model has higher p(S) and lower perplexity

perplexity = 2#$, & = '
( ∑*+'

,-./ log3 4(6*)
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Low Perplexity = Better Model

¡ Training 38 million words, test 1.5 million words, WSJ

8

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109



Perplexity As A Branching Factor

¡ Assign probability of 1 to the test data à perplexity = 1

¡ Assign probability of !|#| to every word à perplexity = |V|

¡ Assign probability of 0 to anything à perplexity = ∞
¡ Cannot compare perplexities of LMs trained on different corpora.

perplexity = 2'
(
) ∑+,(-./0 1234 5(7+)

9



This Lecture

¡ Dealing with unseen words/n-grams
¡ Add-one smoothing

¡ Linear interpolation

¡ Absolute discounting

¡ Kneser-Ney smoothing

¡ Neural language modeling
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Berkeley Restaurant Project Sentences

¡ can you tell me about any good cantonese restaurants close by

¡ mid priced that food is what i’m looking for

¡ tell me about chez pansies

¡ can you give me a listing of the kinds of food that are available

¡ i’m looking for a good place to eat breakfast

¡ when is cafe venezia open during the day
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Raw Bigram Counts

¡ Out of 9222 sentences

12



Raw Bigram Probabilities

¡ Normalize by unigrams

¡ Result
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Approximating Shakespeare

14



Shakespeare As Corpus

¡ N=884,647 tokens, V=29,066

¡ Shakespeare produced 300,000 bigram types out of !"=844 million 
possible bigrams

¡ 99.96% of the possible bigrams were never seen (have zero entries in the table)

¡ Quadrigrams worse: What’s coming out looks like Shakespeare because 
it is Shakespeare
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The Perils of Overfitting

¡ N-grams only work well for word prediction if the test corpus looks like the 
training corpus

¡ In real life, it often doesn’t

¡ We need to train robust models that generalize!
¡ One kind of generalization: Zeros!

¡ Things that don’t ever occur in the training set

¡ But occur in the test set
16



Zeros

¡ Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request
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¡ Test set:
… denied the offer
… denied the loan

P(“offer” | denied the) = 0



Zero Probability Bigrams

¡ Bigrams with zero probability

¡ Mean that we will assign 0 probability to the test set

¡ And hence we cannot compute perplexity (can’t divide by 0)
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Smoothing
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The Intuition of Smoothing

¡ When we have sparse statistics:
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P(w | denied the)
3 allegations
2 reports
1 claims
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7 total
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The Intuition of Smoothing
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¡ Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

al
le

ga
tio

ns

at
ta
ck

m
an

ou
tc
om
e

…al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

Credit: Dan Klein



Add-one Estimation (Laplace Smoothing)
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¡ Pretend we saw each word one more time than we did

¡ Just add one to all the counts!

¡ MLE estimate:

¡ Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi )
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi )+1
c(wi−1)+V



Example: Add-one Smoothing
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xya 100 100/300 101 101/326
xyb 0 0/300 1 1/326
xyc 0 0/300 1 1/326
xyd 200 200/300 201 201/326
xye 0 0/300 1 1/326

…
xyz 0 0/300 1 1/326

Total xy 300 300/300 326 326/326



Berkeley Restaurant Corpus: Laplace Smoothed Bigram Counts
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Laplace-smoothed Bigrams
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V=1446 in the Berkeley Restaurant Project corpus



Reconstruct the Count Matrix
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!∗ #$%&#$ = (∗ #$ #$%& ⋅ ! #$%& = ! #$%&#$ + 1
! #$%& + , ⋅ !(#$%&)



Compare with Raw Bigram Counts
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Problem with Add-One Smoothing
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We’ve been considering just 26 letter types …

xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
xyc 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29

…
xyz 0 0/3 1 1/29

Total xy 3 3/3 29 29/29



Problem with Add-One Smoothing
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Suppose we’re considering 20000 word types
see the abacus  1 1/3 2 2/20003
see the abbot 0 0/3 1 1/20003

see the abduct 0 0/3 1 1/20003
see the above 2 2/3 3 3/20003
see the Abram 0 0/3 1 1/20003

…

see the zygote 0 0/3 1 1/20003
Total 3 3/3 20003 20003/20003



Problem with Add-One Smoothing
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see the abacus  1 1/3 2 2/20003
see the abbot 0 0/3 1 1/20003

see the abduct 0 0/3 1 1/20003
see the above 2 2/3 3 3/20003
see the Abram 0 0/3 1 1/20003

…

see the zygote 0 0/3 1 1/20003
Total 3 3/3 20003 20003/20003

“Novel event” = event never happened in training data.
Here: 19998 novel events, with total estimated probability 19998/20003.  
Add-one smoothing thinks we are extremely likely to see novel events, rather 

than words we’ve seen.

Suppose we’re considering 20000 word types



Infinite Dictionary?
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In fact, aren’t there infinitely many possible word types?
see the aaaaa 1 1/3 2 2/(∞+3)
see the aaaab 0 0/3 1 1/(∞+3)
see the aaaac 0 0/3 1 1/(∞+3)
see the aaaad 2 2/3 3 3/(∞+3)
see the aaaae 0 0/3 1 1/(∞+3)

…

see the zzzzz 0 0/3 1 1/(∞+3)
Total 3 3/3 (∞+3) (∞+3)/(∞+3)



Add-Lambda Smoothing
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¡ A large dictionary makes novel events too probable.

¡ To fix: Instead of adding 1 to all counts, add l = 0.01?
¡ This gives much less probability to novel events.

¡ But how to pick best value for l?  
¡ That is, how much should we smooth?



Add-0.001 Smoothing
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Doesn’t smooth much (estimated distribution has high variance)
xya 1 1/3 1.001 0.331
xyb 0 0/3 0.001 0.0003
xyc 0 0/3 0.001 0.0003
xyd 2 2/3 2.001 0.661
xye 0 0/3 0.001 0.0003

…
xyz 0 0/3 0.001 0.0003

Total xy 3 3/3 3.026 1



Add-1000 Smoothing
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Smooths too much (estimated distribution has high bias)

xya 1 1/3 1001 1/26
xyb 0 0/3 1000 1/26
xyc 0 0/3 1000 1/26
xyd 2 2/3 1002 1/26
xye 0 0/3 1000 1/26

…
xyz 0 0/3 1000 1/26

Total xy 3 3/3 26003 1



Add-Lambda Smoothing
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¡ A large dictionary makes novel events too probable.

¡ To fix: Instead of adding 1 to all counts, add l

¡ But how to pick best value for l?  
¡ That is, how much should we smooth?

¡ E.g., how much probability to “set aside” for novel events?
¡ Depends on how likely novel events really are!

¡ Which may depend on the type of text, size of training corpus, …

¡ Can we figure it out from the data?
¡ We’ll look at a few methods for deciding how much to smooth.



Setting Smoothing Parameters
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¡ How to pick best value for l? (in add- l smoothing)

¡ Try many l values & report the one that gets best results?

¡ How to measure whether a particular l gets good results?
¡ Is it fair to measure that on test data (for setting l)?

¡ Moral: Selective reporting on test data can make a method look artificially good.  
So it is unethical.   

¡ Rule: Test data cannot influence system development.  No peeking!  Use it only to 
evaluate the final system(s). Report all results on it.

Training Test



Setting Smoothing Parameters
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¡ How to pick best value for l? (in add- l smoothing)

¡ Try many l values & report the one that gets best results?

Training Test

Dev.

Pick l that
gets best 
results on 
this 20% … 

… when we collect counts 
from this 80% and smooth 
them using add-l smoothing.

Now use that 
l to get 
smoothed 
counts from 
all 100% …

… and report 
results of that 
final model on 
test data.



Large or Small Dev Set?
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¡ Here we held out 20% of our training set (yellow) for development.

¡ Would like to use > 20% yellow:
¡ 20% not enough to reliably assess l

¡ Would like to use > 80% blue:
¡ Best l for smoothing 80% ¹ best l for smoothing 100%



Cross-Validation
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¡ Try 5 training/dev splits as below

¡ Pick l that gets best average performance

¡ J Tests on all 100% as yellow, so we can more reliably assess l
¡ L Still picks a l that’s good at smoothing the 80% size, not 100%.

¡ But now we can grow that 80% without trouble 

Dev.
Dev.

Dev.
Dev.

Dev.

Test



N-fold Cross-Validation (“Leave One Out”)
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¡ Test each sentence with smoothed model from other N-1 sentences

¡ J Still tests on all 100% as yellow, so we can reliably assess l
¡ J Trains on nearly 100% blue data ((N-1)/N) to measure whether l is good for 

smoothing that

…
Test



N-fold Cross-Validation (“Leave One Out”)
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¡ J Surprisingly fast: why?
¡ Usually easy to retrain on blue by adding/subtracting 1 sentence’s counts

…
Test



More Ideas for Smoothing
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¡ Remember, we’re trying to decide how much to smooth.
¡ E.g., how much probability to “set aside” for novel events?

¡ Depends on how likely novel events really are

¡ Which may depend on the type of text, size of training corpus, …

¡ Can we figure this out from the data?
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¡ Why are we treating all novel 
events as the same?



Backoff and Interpolation

44

words
¡ Why are we treating all novel 

events as the same?



Backoff and Interpolation
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¡ p(zygote | see the) vs. p(baby | see the)

¡ What if count(see the zygote) = count(see the baby) = 0?

¡ baby beats zygote as a unigram

¡ the baby beats the zygote as a bigram

¡ see the baby beats see the zygote ?  
(even if both have the same count, such as 0)



Backoff and Interpolation
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¡ Condition on less context for contexts you haven’t learned much about 

¡ backoff: use trigram if you have good evidence, otherwise bigram, 
otherwise unigram 

¡ Interpolation: mixture of unigram, bigram, trigram (etc.) models

¡ Interpolation works better



Simple Linear Interpolation

47



Linear Interpolation Conditioned on Context
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Advanced 

Smoothing



Absolute Discounting

¡ Suppose we wanted to subtract a little from a 
count of 4 to save probability mass for zeros

¡ How much to subtract?

¡ Church and Gale (1991)’s clever idea

¡ Divide up 22 million words of AP Newswire
¡ Training and held-out test

¡ For each bigram in the training set

¡ See the actual content in the held-out set

¡ It looks like !∗ = ! − 0.75
50

Bigram count 
in training

Bigram count in 
held-out set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26



Absolute Discounting Interpolation

¡ Instead of multiplying the higher-order by lambdas

¡ Save ourselves some time and just subtract some d!

¡ But should we really just use the regular unigram P(w)?
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Kneser-Ney Smoothing

¡ Better estimate for probabilities of lower-order unigrams!
¡ Shannon game:  I can’t see without my reading   ___________?

¡ “Francisco” is more common than “glasses”

¡ … but “Francisco” always follows “San”

Francisco glasses

52

Although Francisco is 
frequent, it is mainly only 
frequent in the phrase  of 

San Francisco 



Kneser-Ney Smoothing

¡ The unigram is useful exactly when we haven’t seen this bigram

¡ Instead of !(#): how likely is w

¡ !%&'()'*+()&' # :  how likely is w to appear as a novel continuation?

¡ For each word, count the number of bigram types it completes

¡ Every bigram type was a novel continuation the first time it was seen

53



Kneser-Ney Smoothing

¡ Better estimate for probabilities of lower-order unigrams!

¡ The unigram is useful exactly when we haven’t seen this bigram

¡ Instead of !(#): how likely is w

¡ !%&'()'*+()&' # :  how likely is w to appear as a novel continuation?

¡ For each word, count the number of bigram types it completes

¡ Every bigram type was a novel continuation the first time it was seen
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Hypothesis:  Words that have appeared in more contexts in the past

are more likely to appear in some new context as well



Kneser-Ney Smoothing

¡ How many times does w appear as a novel continuation:

¡ Normalized by the total number of word bigram types

PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0}

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0} 55



Kneser-Ney Smoothing

¡ Alternative metaphor: The number of  # of word types seen to precede w

¡ Normalized by the # of words preceding all words

¡ A frequent word (Francisco) occurring in only one context (San) will have a low 
continuation probability

| {wi−1 : c(wi−1,w)> 0} |

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}
{w 'i−1 : c(w 'i−1,w ')> 0}

w '
∑
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Kneser-Ney Smoothing (for bigrams)

PKN (wi |wi−1) =
max(c(wi−1,wi )− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi )

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant;  the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount
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Out of Vocabulary (OOV) Words

¡ Closed vocabulary vs. open vocabulary

¡ To deal with unknown words:

¡ Mask such terms with a special token  <UNK>

¡ Character-level language models 
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Practical Issues: Huge Web-Scale N-grams

¡ How to deal with, e.g., Google N-gram corpus
¡ Pruning
¡ Only store N-grams with count > threshold.

¡ Remove singletons of higher-order n-grams
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Practical Issues: Huge Web-Scale N-grams

¡ Efficiency
¡ Efficient data structures 

¡ e.g. trie

¡ Store words as indexes, not strings

¡ Quantize probabilities 

60https://en.wikipedia.org/wiki/Trie



Practical Issues: Engineering N-gram Models

¡ For 5+-gram models, need to 
store between 100M and 10B 
context word-count triples

¡ Make it fit into memory by delta 
encoding schema: store deltas 
instead of values and use 
variable-length encoding

61

Pauls and Klein (2011), Heafield (2011)



Neural 
Language Modeling
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How to Build Neural Language Models

¡ Recall the language modeling task
¡ Input: sequence of words !"#$%&$
¡ Output: probability of the next word '
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Neural Language Models

¡ Early work: feedforward neural networks looking at context
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Slides credit from Greg Durrett

Words/one-hot vectors

Concatenated word embeddings

Output distribution

Hidden layer



Fixed-window Neural Language Model

¡ Improvements over n-gram LM: 
¡ No sparsity problem

¡ Don’t need to store all observed n-grams

¡ Limitations
¡ Fixed window is too small

¡ Enlarging window enlarges W

¡ Windows can never be large enough!

¡ Different words are multiplied by completely different weights. No symmetry in how the 
inputs are processed.
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We need a neural 
architecture that 
can process any 

length input



RNN
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• Take sequential input of any length

• Apply the same weights on each step

• Can optionally produce output on each step



RNN Language Modeling
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W is a (vocab size) x (hidden size) matrix



Training RNN LMs
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Input is a sequence of words, 
output is those words shifted by one.

Allows us to efficiently batch up 
training across time



Training RNN LMs
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¡ Total loss = sum of negative log likelihoods at each position

¡ Backpropagate through the network to simultaneously learn to predict next word 
given previous words at all positions 



LM Evaluation
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¡ Accuracy doesn’t make sense – predicting the next word is generally impossible so 
accuracy values would be very low

¡ Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

¡ Perplexity: lower is better



Limitations of LSTM LMs
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¡ Need some kind of 
pointing mechanism to 
repeat recent words

¡ Transformers can do this 



Next Lecture
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¡ Vector Semantics and Word Embedding


