
CS 4650/7650:
Natural Language Processing

Language Modeling (2)

Diyi Yang

1Many slides from Dan Jurafsky and Jason Esiner

Recap: Language Model

¡ Unigram model: ! "# ! "$! "% …!("()

¡ Bigram model: ! "# ! "$|"# ! "%|"$ …!("(|"(+#)

¡ Trigram model:

! "# ! "$|"# ! "%|"$, "# …!("(|"(+#"(+$)

¡ N-gram model:

! "# ! "$|"# … !("(|"(+#"(+$ …"(+-)

2

Recap: How To Evaluate

¡ Extrinsic: build a new language model, use it for some task (MT, ASR, etc.)

¡ Intrinsic: measure how good we are at modeling language

3

Difficulty of Extrinsic Evaluation

¡ Extrinsic: build a new language model, use it for some task (MT, etc.)

¡ Time-consuming; can take days or weeks

¡ So, sometimes use intrinsic evaluation: perplexity

¡ Bad approximation

¡ Unless the test data looks just like the training data

¡ So generally only useful in pilot experiments

4

Recap: Intrinsic Evaluation

¡ Intuitively, language models should assign high probability to real language they
have not seen before

5

Evaluation: Perplexity

¡ Test data: ! = #$, #&, … , #()*+
¡ Parameters are not estimated from S

¡ Perplexity is the normalized inverse probability of S

, ! = -
./$

()*+
,(#.) log& ,(!) = 5

./$

()*+
log& ,(#.)

6 = 1
8 5

./$

()*+
log& ,(#.)

6

perplexity = 2:;

Evaluation: Perplexity

¡ Sent is the number of sentences in the test data
¡ M is the number of words in the test corpus

¡ A better language model has higher p(S) and lower perplexity

perplexity = 2#$, & = '
(∑*+'

,-./ log3 4(6*)

7

Low Perplexity = Better Model

¡ Training 38 million words, test 1.5 million words, WSJ

8

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

Perplexity As A Branching Factor

¡ Assign probability of 1 to the test data à perplexity = 1

¡ Assign probability of !|#| to every word à perplexity = |V|

¡ Assign probability of 0 to anything à perplexity = ∞
¡ Cannot compare perplexities of LMs trained on different corpora.

perplexity = 2'
(
) ∑+,(-./0 1234 5(7+)

9

This Lecture

¡ Dealing with unseen words/n-grams
¡ Add-one smoothing

¡ Linear interpolation

¡ Absolute discounting

¡ Kneser-Ney smoothing

¡ Neural language modeling

10

Berkeley Restaurant Project Sentences

¡ can you tell me about any good cantonese restaurants close by

¡ mid priced that food is what i’m looking for

¡ tell me about chez pansies

¡ can you give me a listing of the kinds of food that are available

¡ i’m looking for a good place to eat breakfast

¡ when is cafe venezia open during the day

11

Raw Bigram Counts

¡ Out of 9222 sentences

12

Raw Bigram Probabilities

¡ Normalize by unigrams

¡ Result

13

Approximating Shakespeare

14

Shakespeare As Corpus

¡ N=884,647 tokens, V=29,066

¡ Shakespeare produced 300,000 bigram types out of !"=844 million
possible bigrams

¡ 99.96% of the possible bigrams were never seen (have zero entries in the table)

¡ Quadrigrams worse: What’s coming out looks like Shakespeare because
it is Shakespeare

15

The Perils of Overfitting

¡ N-grams only work well for word prediction if the test corpus looks like the
training corpus

¡ In real life, it often doesn’t

¡ We need to train robust models that generalize!
¡ One kind of generalization: Zeros!

¡ Things that don’t ever occur in the training set

¡ But occur in the test set
16

Zeros

¡ Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

17

¡ Test set:
… denied the offer
… denied the loan

P(“offer” | denied the) = 0

Zero Probability Bigrams

¡ Bigrams with zero probability

¡ Mean that we will assign 0 probability to the test set

¡ And hence we cannot compute perplexity (can’t divide by 0)

18

Smoothing

19

The Intuition of Smoothing

¡ When we have sparse statistics:

20

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

at
ta
ck

re
qu

es
t

m
an

ou
tc
om
e

…

The Intuition of Smoothing

21

¡ Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

al
le

ga
tio

ns

at
ta
ck

m
an

ou
tc
om
e

…al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

Credit: Dan Klein

Add-one Estimation (Laplace Smoothing)

22

¡ Pretend we saw each word one more time than we did

¡ Just add one to all the counts!

¡ MLE estimate:

¡ Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Example: Add-one Smoothing

23

xya 100 100/300 101 101/326
xyb 0 0/300 1 1/326
xyc 0 0/300 1 1/326
xyd 200 200/300 201 201/326
xye 0 0/300 1 1/326

…
xyz 0 0/300 1 1/326

Total xy 300 300/300 326 326/326

Berkeley Restaurant Corpus: Laplace Smoothed Bigram Counts

24

Laplace-smoothed Bigrams

25

V=1446 in the Berkeley Restaurant Project corpus

Reconstruct the Count Matrix

26

!∗ #$%&#$ = (∗ #$ #$%& ⋅ ! #$%& = ! #$%&#$ + 1
! #$%& + , ⋅ !(#$%&)

Compare with Raw Bigram Counts

27

Problem with Add-One Smoothing

28

We’ve been considering just 26 letter types …

xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
xyc 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29

…
xyz 0 0/3 1 1/29

Total xy 3 3/3 29 29/29

Problem with Add-One Smoothing

29

Suppose we’re considering 20000 word types
see the abacus 1 1/3 2 2/20003
see the abbot 0 0/3 1 1/20003

see the abduct 0 0/3 1 1/20003
see the above 2 2/3 3 3/20003
see the Abram 0 0/3 1 1/20003

…

see the zygote 0 0/3 1 1/20003
Total 3 3/3 20003 20003/20003

Problem with Add-One Smoothing

30

see the abacus 1 1/3 2 2/20003
see the abbot 0 0/3 1 1/20003

see the abduct 0 0/3 1 1/20003
see the above 2 2/3 3 3/20003
see the Abram 0 0/3 1 1/20003

…

see the zygote 0 0/3 1 1/20003
Total 3 3/3 20003 20003/20003

“Novel event” = event never happened in training data.
Here: 19998 novel events, with total estimated probability 19998/20003.
Add-one smoothing thinks we are extremely likely to see novel events, rather

than words we’ve seen.

Suppose we’re considering 20000 word types

Infinite Dictionary?

31

In fact, aren’t there infinitely many possible word types?
see the aaaaa 1 1/3 2 2/(∞+3)
see the aaaab 0 0/3 1 1/(∞+3)
see the aaaac 0 0/3 1 1/(∞+3)
see the aaaad 2 2/3 3 3/(∞+3)
see the aaaae 0 0/3 1 1/(∞+3)

…

see the zzzzz 0 0/3 1 1/(∞+3)
Total 3 3/3 (∞+3) (∞+3)/(∞+3)

Add-Lambda Smoothing

32

¡ A large dictionary makes novel events too probable.

¡ To fix: Instead of adding 1 to all counts, add l = 0.01?
¡ This gives much less probability to novel events.

¡ But how to pick best value for l?
¡ That is, how much should we smooth?

Add-0.001 Smoothing

33

Doesn’t smooth much (estimated distribution has high variance)
xya 1 1/3 1.001 0.331
xyb 0 0/3 0.001 0.0003
xyc 0 0/3 0.001 0.0003
xyd 2 2/3 2.001 0.661
xye 0 0/3 0.001 0.0003

…
xyz 0 0/3 0.001 0.0003

Total xy 3 3/3 3.026 1

Add-1000 Smoothing

34

Smooths too much (estimated distribution has high bias)

xya 1 1/3 1001 1/26
xyb 0 0/3 1000 1/26
xyc 0 0/3 1000 1/26
xyd 2 2/3 1002 1/26
xye 0 0/3 1000 1/26

…
xyz 0 0/3 1000 1/26

Total xy 3 3/3 26003 1

Add-Lambda Smoothing

35

¡ A large dictionary makes novel events too probable.

¡ To fix: Instead of adding 1 to all counts, add l

¡ But how to pick best value for l?
¡ That is, how much should we smooth?

¡ E.g., how much probability to “set aside” for novel events?
¡ Depends on how likely novel events really are!

¡ Which may depend on the type of text, size of training corpus, …

¡ Can we figure it out from the data?
¡ We’ll look at a few methods for deciding how much to smooth.

Setting Smoothing Parameters

36

¡ How to pick best value for l? (in add- l smoothing)

¡ Try many l values & report the one that gets best results?

¡ How to measure whether a particular l gets good results?
¡ Is it fair to measure that on test data (for setting l)?

¡ Moral: Selective reporting on test data can make a method look artificially good.
So it is unethical.

¡ Rule: Test data cannot influence system development. No peeking! Use it only to
evaluate the final system(s). Report all results on it.

Training Test

Setting Smoothing Parameters

37

¡ How to pick best value for l? (in add- l smoothing)

¡ Try many l values & report the one that gets best results?

Training Test

Dev.

Pick l that
gets best
results on
this 20% …

… when we collect counts
from this 80% and smooth
them using add-l smoothing.

Now use that
l to get
smoothed
counts from
all 100% …

… and report
results of that
final model on
test data.

Large or Small Dev Set?

38

¡ Here we held out 20% of our training set (yellow) for development.

¡ Would like to use > 20% yellow:
¡ 20% not enough to reliably assess l

¡ Would like to use > 80% blue:
¡ Best l for smoothing 80% ¹ best l for smoothing 100%

Cross-Validation

39

¡ Try 5 training/dev splits as below

¡ Pick l that gets best average performance

¡ J Tests on all 100% as yellow, so we can more reliably assess l
¡ L Still picks a l that’s good at smoothing the 80% size, not 100%.

¡ But now we can grow that 80% without trouble

Dev.
Dev.

Dev.
Dev.

Dev.

Test

N-fold Cross-Validation (“Leave One Out”)

40

¡ Test each sentence with smoothed model from other N-1 sentences

¡ J Still tests on all 100% as yellow, so we can reliably assess l
¡ J Trains on nearly 100% blue data ((N-1)/N) to measure whether l is good for

smoothing that

…
Test

N-fold Cross-Validation (“Leave One Out”)

41

¡ J Surprisingly fast: why?
¡ Usually easy to retrain on blue by adding/subtracting 1 sentence’s counts

…
Test

More Ideas for Smoothing

42

¡ Remember, we’re trying to decide how much to smooth.
¡ E.g., how much probability to “set aside” for novel events?

¡ Depends on how likely novel events really are

¡ Which may depend on the type of text, size of training corpus, …

¡ Can we figure this out from the data?

43

¡ Why are we treating all novel
events as the same?

Backoff and Interpolation

44

words
¡ Why are we treating all novel

events as the same?

Backoff and Interpolation

45

¡ p(zygote | see the) vs. p(baby | see the)

¡ What if count(see the zygote) = count(see the baby) = 0?

¡ baby beats zygote as a unigram

¡ the baby beats the zygote as a bigram

¡ see the baby beats see the zygote ?
(even if both have the same count, such as 0)

Backoff and Interpolation

46

¡ Condition on less context for contexts you haven’t learned much about

¡ backoff: use trigram if you have good evidence, otherwise bigram,
otherwise unigram

¡ Interpolation: mixture of unigram, bigram, trigram (etc.) models

¡ Interpolation works better

Simple Linear Interpolation

47

Linear Interpolation Conditioned on Context

48

49

Advanced

Smoothing

Absolute Discounting

¡ Suppose we wanted to subtract a little from a
count of 4 to save probability mass for zeros

¡ How much to subtract?

¡ Church and Gale (1991)’s clever idea

¡ Divide up 22 million words of AP Newswire
¡ Training and held-out test

¡ For each bigram in the training set

¡ See the actual content in the held-out set

¡ It looks like !∗ = ! − 0.75
50

Bigram count
in training

Bigram count in
held-out set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Absolute Discounting Interpolation

¡ Instead of multiplying the higher-order by lambdas

¡ Save ourselves some time and just subtract some d!

¡ But should we really just use the regular unigram P(w)?

51

)()(
)(
),(

)|(1
1

1
1scountingAbsoluteDi wPw

wc
dwwcwwP i

i

ii
ii -

-

-
- +

-
= l

discounted bigram Interpolation weight

unigram

Kneser-Ney Smoothing

¡ Better estimate for probabilities of lower-order unigrams!
¡ Shannon game: I can’t see without my reading ___________?

¡ “Francisco” is more common than “glasses”

¡ … but “Francisco” always follows “San”

Francisco glasses

52

Although Francisco is
frequent, it is mainly only
frequent in the phrase of

San Francisco

Kneser-Ney Smoothing

¡ The unigram is useful exactly when we haven’t seen this bigram

¡ Instead of !(#): how likely is w

¡ !%&'()'*+()&' # : how likely is w to appear as a novel continuation?

¡ For each word, count the number of bigram types it completes

¡ Every bigram type was a novel continuation the first time it was seen

53

Kneser-Ney Smoothing

¡ Better estimate for probabilities of lower-order unigrams!

¡ The unigram is useful exactly when we haven’t seen this bigram

¡ Instead of !(#): how likely is w

¡ !%&'()'*+()&' # : how likely is w to appear as a novel continuation?

¡ For each word, count the number of bigram types it completes

¡ Every bigram type was a novel continuation the first time it was seen

54

Hypothesis: Words that have appeared in more contexts in the past

are more likely to appear in some new context as well

Kneser-Ney Smoothing

¡ How many times does w appear as a novel continuation:

¡ Normalized by the total number of word bigram types

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0} 55

Kneser-Ney Smoothing

¡ Alternative metaphor: The number of # of word types seen to precede w

¡ Normalized by the # of words preceding all words

¡ A frequent word (Francisco) occurring in only one context (San) will have a low
continuation probability

| {wi−1 : c(wi−1,w)> 0} |

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}
{w 'i−1 : c(w 'i−1,w ')> 0}

w '
∑

56

Kneser-Ney Smoothing (for bigrams)

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount

57

Out of Vocabulary (OOV) Words

¡ Closed vocabulary vs. open vocabulary

¡ To deal with unknown words:

¡ Mask such terms with a special token <UNK>

¡ Character-level language models

58

Practical Issues: Huge Web-Scale N-grams

¡ How to deal with, e.g., Google N-gram corpus
¡ Pruning
¡ Only store N-grams with count > threshold.

¡ Remove singletons of higher-order n-grams

59

Practical Issues: Huge Web-Scale N-grams

¡ Efficiency
¡ Efficient data structures

¡ e.g. trie

¡ Store words as indexes, not strings

¡ Quantize probabilities

60https://en.wikipedia.org/wiki/Trie

Practical Issues: Engineering N-gram Models

¡ For 5+-gram models, need to
store between 100M and 10B
context word-count triples

¡ Make it fit into memory by delta
encoding schema: store deltas
instead of values and use
variable-length encoding

61

Pauls and Klein (2011), Heafield (2011)

Neural
Language Modeling

62

How to Build Neural Language Models

¡ Recall the language modeling task
¡ Input: sequence of words !"#$%&$
¡ Output: probability of the next word '

63

Neural Language Models

¡ Early work: feedforward neural networks looking at context

64

Slides credit from Greg Durrett

Words/one-hot vectors

Concatenated word embeddings

Output distribution

Hidden layer

Fixed-window Neural Language Model

¡ Improvements over n-gram LM:
¡ No sparsity problem

¡ Don’t need to store all observed n-grams

¡ Limitations
¡ Fixed window is too small

¡ Enlarging window enlarges W

¡ Windows can never be large enough!

¡ Different words are multiplied by completely different weights. No symmetry in how the
inputs are processed.

65

We need a neural
architecture that
can process any

length input

RNN

66

• Take sequential input of any length

• Apply the same weights on each step

• Can optionally produce output on each step

RNN Language Modeling

67

W is a (vocab size) x (hidden size) matrix

Training RNN LMs

68

Input is a sequence of words,
output is those words shifted by one.

Allows us to efficiently batch up
training across time

Training RNN LMs

69

¡ Total loss = sum of negative log likelihoods at each position

¡ Backpropagate through the network to simultaneously learn to predict next word
given previous words at all positions

LM Evaluation

70

¡ Accuracy doesn’t make sense – predicting the next word is generally impossible so
accuracy values would be very low

¡ Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

¡ Perplexity: lower is better

Limitations of LSTM LMs

71

¡ Need some kind of
pointing mechanism to
repeat recent words

¡ Transformers can do this

Next Lecture

72

¡ Vector Semantics and Word Embedding

