
CS 4650/7650:
Natural Language Processing

Text Classification

Diyi Yang

1
Some slides borrowed from Jacob Eisenstein (was at GT) and Dan Jurafsky at Stanford

TA Office Hours

¡ Ian Stewart: Tuesdays, 2-4pm, Coda C1106

¡ Jiaao Chen: Thursdays, 2-4pm, Coda C1008

¡ Nihal Singh: Fridays, 9-11am, Coda C1008

¡ Jingfeng Yang: Mondays, 10am-12pm, Coda 14th common area

2

Sign Up for Piazza

https://piazza.com/gatech/spring2020/cs7650cs4650/home

3

https://piazza.com/gatech/spring2020/cs7650cs4650/home

Staff Mailing List

cs4650-7650-s20-staff@googlegroups.com

4

mailto:cs4650-7650-s20-staff@googlegroups.com

Waiting List

5

Your Homework 1

¡ Due date: Jan 15th, 3:00pm, EST

6

¡Other Questions?

7

Very Quick Review on Probabilities

¡ Event space (e.g., !,#) – in this class, usually discrete

¡ Random variables (e.g., %, &)

¡ Random variable % takes value ', ' ∈ ! with probability) % = ' or) '

8

Very Quick Review on Probabilities

¡ Joint probability ! " = $, & = '

¡ Conditional probability ! " = $ & = ') =)(+,-,.,/)
)(.,/)

9

Very Quick Review on Probabilities

¡ Always true:
¡ ! " = $, & = ' = ! " = $ & = ' ⋅ ! & = ' =) & = ' " = $ ⋅)(" = $)

¡ Sometimes true:

¡ ! " = $, & = ' = !(" = $) ⋅ ! & = '

10

Very Quick Review on Probabilities

!
" = !!

!! !%" !
¡ The number of ways to select k words out of n given words (“unordered samples without

replacement”)

&
&', &), … , &"

= &!
&'! &)!⋯&"!

¡ Here, &, &', &) … , &" are all non-negative integers, and &' + &) + &- + ⋯&" = &
¡ The number of ways to split n distinct words into k distinct groups of sizes n1, . . . , nk, respectively

11

Classification

¡ A mapping ℎ from input data x (drawn from instance space #) to a label y from
some enumerable output space%
¡ # = set of all documents

¡ % = {English, Mandarin, Greek, …}

¡ x = a single document

¡ y = ancient Greek

12

Movie Ratings

13

Customer Review

14

Political Opinion Mining

15

Female or Male Author?

16

Is This Spam?

17

What Is the Subject of This Article?

18

This Class

¡ Basic representations of text data for classification

¡ Three linear classifiers

¡ Naïve Bayes

¡ Perception

¡ Logistic regression

19

The Text Classification Problem

¡ Given a text ! = #$,#&,… ,#(∈ *∗, predict a label , ∈ -

20

Some Direct Text Classification Applications

Task ! "
Language identification text {English, Mandarin, Greek, …}

Spam classification email {spam, not spam}
Authorship attribution text {jk rowling, james joyce, …}

Genre classification novel {detective, romance, gothic, …}
Sentiment classification text {positive, negative, neutral, mixed}

21

Some Direct Text Classification Applications

Task ! "
Language identification text {English, Mandarin, Greek, …}

Spam classification email {spam, not spam}
Authorship attribution text {jk rowling, james joyce, …}

Genre classification novel {detective, romance, gothic, …}
Sentiment classification text {positive, negative, neutral, mixed}

Indirectly, methods from text classification apply to a huge range of settings in natural language
processing, and will appear again and again throughout the course.

22

Bag-of-Words

23

The Bag-of-Words

¡ One challenge is that the sequential representation !",!$,… ,!& may have a
different length ' for every document.

¡ The bag-of-words is a fixed-length representation, which consists of a vector of
word counts:

¡ The length of (is equal to the size of the vocabulary)
¡ For each (, there may be many possible w, depending on word order.

24

Linear Classification on the Bag of Words

¡ Let !(#, %) score the compatibility of bag-of-words # and label %, then
'% = argmax

.
!(#, %)

¡ In a linear classifier, this scoring function has a simple form:

! #, % = / ⋅ 1 #, % = 2
345

63 ⋅ 73 #, %

¡ where / is a vector of weights, and 1 is a feature function

25

Feature Functions

¡ In classification, the feature function is usually a simple combination of
! and ", such as:

#$!, " = '()*+,-, if y = FICTION
0, otherwise

26

Summary and Next Steps

¡ To summarize, our classification function is:
!" = argmax

)
* ⋅ , -, "

where - is the bag-of-words representation, and , is a feature function

¡ The learning problem is to find the right weights *, assuming a labeled
dataset (-(0), "(0)) 023

4

27

Probabilistic Classification

¡ Naïve Bayes is a probabilistic classifier. It takes the following strategy:
¡ Define a probability model !(#, %)
¡ Estimate the parameters of the probability model by maximum likelihood – that

is, by maximizing the likelihood of the dataset

28

A Probability Model for Text Classification

¡ First, assume each instance is independent of the others

¡ ! " #:% , ' #:% = ∏*+#
% !("(*), '(*))

¡ Apply the chain rule of the probability

¡ ! ", ' = ! " ' ⋅ !(')
¡ Define the parametric form of each probability

¡ ! ' = Categorical 9 ! " ' = Multinomail(>)
¡ The multinomial is a distribution over vectors of counts

¡ The parameters 9 and > are vectors of probabilities
29

The Multinomial Distribution

¡ Suppose the word whale has probability !"
¡ What is the probability that this word appears 3 times?

30

The Multinomial Distribution

Each word’s probability is exponentiated by its count,

¡ Multinomail(+, -, .) = ∑2345 62 !
∏2345 (62!)

∏9:;
< -9

62

31

The Multinomial Distribution

Each word’s probability is exponentiated by its count,

¡ Multinomail(+, -, .) = ∑2345 62 !
∏2345 (62!)

∏9:;
< -9

62

¡ The coefficient is the count of the number of possible orderings of +.

32

The Multinomial Distribution

Each word’s probability is exponentiated by its count,

¡ Multinomail(+, -, .) = ∑2345 62 !
∏2345 (62!)

∏9:;
< -9

62

¡ The coefficient is the count of the number of possible orderings of +.

¡ Crucially, it does not depend on the frequency parameter -

33

Estimating Naïve Bayes

¡ In relative frequency estimation, the parameters are set to empirical frequencies:

¡ This turns out to be identical to the maximum likelihood estimate:

34

Quick Question (1)

Multiplying lots of small probabilities (all are under 1) can
lead to numerical underflow …

35

Quick Question (1)

Multiplying lots of small probabilities (all are under 1) can
lead to numerical underflow …

36

Low Count Issue

¡ What if we have seen no training documents with the word fantastic
and classified in the topic positive ?

¡ "̂ “$%&'%(')*” ",()')-.) = 12345(“7845895:1”, <29:5:=>)
∑@∈B 12345(C,<29:5:=>) = 0

¡ Zero probabilities cannot be conditioned away

37

Smoothing

¡ To deal with low counts, it can be helpful to smooth probabilities

¡ Smoothing term ! is a hyperparameter, which must be tuned on a development set

¡ Laplace (add-1)smoothing: widely used

38

Too Naïve?

¡ Naïve Bayes is so called because:

¡ Bayes rule is used to convert the observation probability !(#|%) into the label
probability ! ' #

¡ The multinomial distribution naively ignores dependencies between words, and
treats every word as equally informative

¡ Discriminative classifiers avoid this problem by not attempting to model the
“generative” probability !(#)

39

The Perceptron Classifier

¡ Error-driven rather than independence assumption

40

The Perceptron Classifier

¡ A simple learning rule:

¡ Run the current classifier on an instance in the training data, obtaining !" =
argmax

)
*(,(-), ")

¡ If the prediction is incorrect:

¡ Increase the weights for the features of the true label

¡ Decrease the weights for the features of the predicted label

¡ 0 ← 0 + 3 , 4 , "(-) − 3 , 4 , !"
¡ Repeat until all training instances are correctly classified, or run out of time41

The Perceptron Classifier (Online Learning)

42

Loss Function

¡ Many classifiers can be viewed as minimizing a loss function on the weights.

¡ Such a function should have two properties:

¡ It should be a good proxy for the accuracy of the classifier

¡ It should be easy to optimize

43

Perceptron as Gradient Descent

¡ This perceptron can be viewed as optimizing the loss function

45

Perceptron as Gradient Descent

¡ This perceptron can be viewed as optimizing the loss function

¡ The gradient of the perceptron loss is part of the perceptron update

46

Logistic Regression

¡ Perceptron classification is discriminative – learns to discriminate correct and
incorrect labels

¡ Naïve Bayes is probabilistic: it assigns calibrated confidence scores to its predictions

¡ Logistic regression is both discriminative and probabilistic. It directly computes the
conditional probability of the label:

47

Logistic Regression

¡ Logistic regression is both discriminative and probabilistic. It directly computes the
conditional probability of the label:

¡ Exponentiation ensures that the probabilities are non-negative.

48

Logistic Regression

¡ Logistic regression is both discriminative and probabilistic. It directly computes the
conditional probability of the label:

¡ Exponentiation ensures that the probabilities are non-negative.

¡ Normalization ensures that the probabilities sum to one.

49

Learning Logistic Regression

¡ Maximization of the conditional log-likelihood

50

Learning Logistic Regression

¡ Maximization of the conditional log-likelihood

¡ Minimization of the negative log-likelihood/logistic loss

51

Regularization

¡ Learning can often be made more robust by regularization: penalizing large weights

¡ where the scalar ! controls the strength of regularization, and

52

Gradient Descent (Batch Optimization)

¡ Logistic regression, perceptron both learn by minimizing a loss function. A general
strategy for minimization is gradient descent

¡ where !(#) ∈ ℝ' is the learning rate at iteration t

53

Stochastic Gradient Descent (Online Optimization)

¡ Computing the gradient over all instances is expensive

¡ Stochastic gradient descent approximates the gradient by its value on a single data:

¡ ! " , $ " is sampled at random from the training set

54

theoretically
guaranteed!

Online Optimization

¡ Gradient descent computes the gradient over all instances

¡ Stochastic gradient descent approximates the gradient by its value on a single data

¡ Minibatch gradient descent approximates the gradient by its value on small number
of instances. This is suited to GPU architectures, widely used in deep learning.

55

Generalized Gradient Descent

56

Summary of Linear Classification

Pros Cons

Naive Bayes Simple, probabilistic, fast
Closed-form solution

Not very accurate

Perceptron Simple, accurate Not probabilistic, may overfit

Logistic Regression Error-driven learning, regularized More difficult to implement

57

