

CS 4650/7650: Natural Language Processing

Introduction to NLP

Diyi Yang

Some slides borrowed from Yulia Tsvetkov at CMU and Noah Smith at UW

Welcome!

Diyi Yang

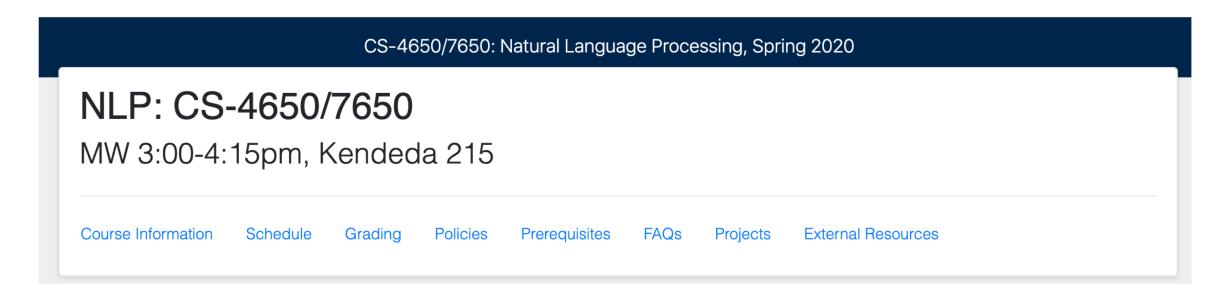
Ian Stewart

Jiaao Chen

Nihal Singh

Course Website

https://www.cc.gatech.edu/classes/AY2020/cs7650_spring



Communication With Machines


```
21:25
73% (2)
6 I need a dinner reservation for Valentine's Day. 99
I'll see if any restaurants have a table for one.
6 No, I need a reservation for two. 99
Why? Is your mother in town?
```

~50-70s

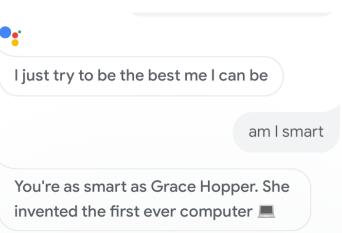
~80s

today

Conversational Agents

Conversational agents contain:

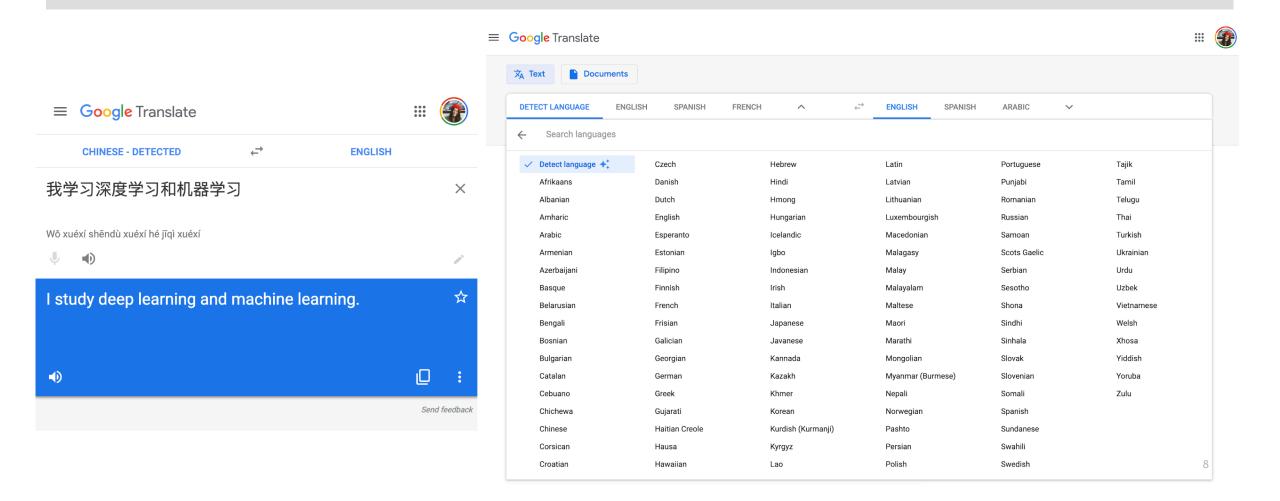
- Speech recognition
- Language analysis
- Dialogue processing
- Information retrieval
- Text to speech



Question Answering

- What does "divergent" mean?
- What year was Abraham Lincoln born?
- How many states were in the United States that year?
- How much Chinese silk was exported to England in the end of the 18th century?
- What do scientists think about the ethics of human cloning?

Machine Translation



Natural Language Processing

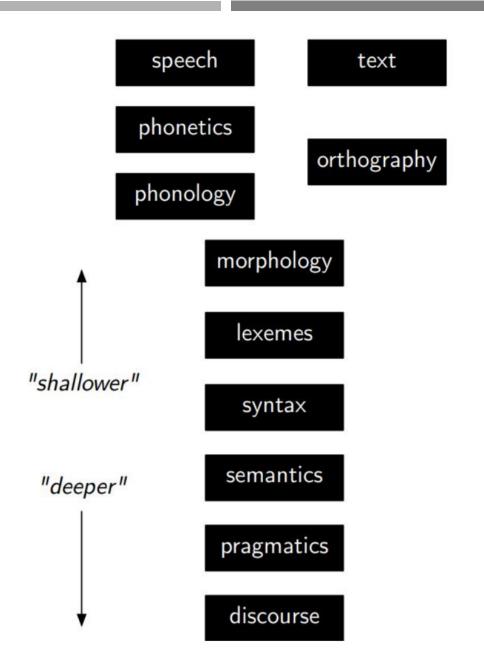
Applications

- Machine Translation
- Information Retrieval
- Question Answering
- Dialogue Systems
- Information Extraction
- Summarization
- Sentiment Analysis
- ...

Core Technologies

- Language modeling
- Part-of-speech tagging
- Syntactic parsing
- Named-entity recognition
- Word sense disambiguation
- Semantic role labeling
- •••

Level Of Linguistic Knowledge



Phonetics, Phonology

Pronunciation Modeling

sounds Th i a si e n

Words

- Language Modeling
- Tokenization
- Spelling correction

words This is a simple sentence

Morphology

- Morphology analysis
- Tokenization
- Lemmatization

WORDS This is a simple sentence

MORPHOLOGY

be
3sg
present

Part of Speech

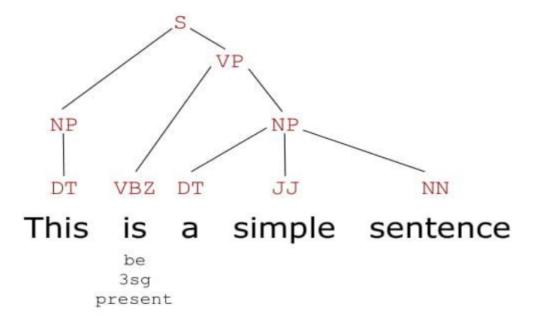
Part of speech tagging

Syntax

Syntactic parsing

SYNTAX

PART OF SPEECH
WORDS
MORPHOLOGY

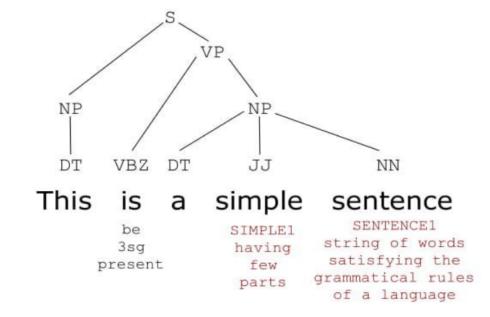


Semantics

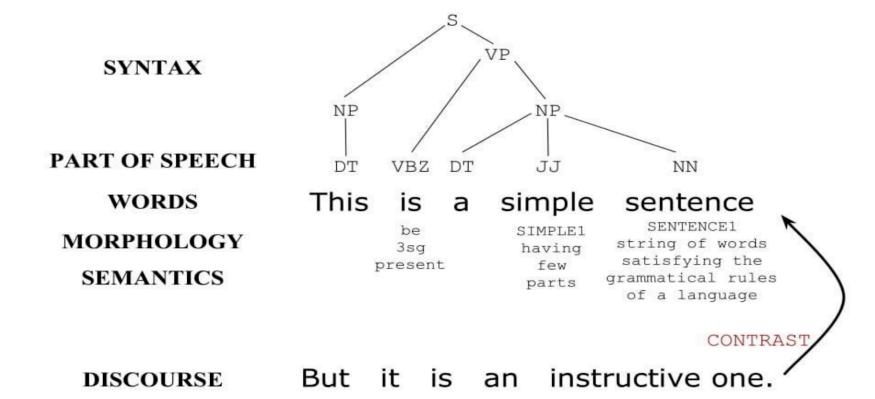
- Named entity recognition
- Word sense disambiguation
- Semantic role labeling

SYNTAX

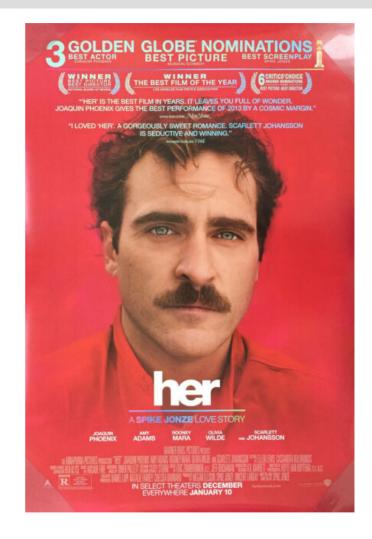
PART OF SPEECH
WORDS
MORPHOLOGY
SEMANTICS



Discourse



Where Are We Now?



Where Are We Now?

Baseline mutual information model (Li et al. 2015) A: Where are you going? (1) B: I'm going to the restroom. (2)

A: See you later. (3)

B: See you later. (4)

A: See you later. (5)

B: See you later. (6)

...

...

A: how old are you? (1)

B: I'm 16. (2)

A: 16? (3)

B: I don't know what you are talking about. (4)

A: You don't know what you are saying. (5)

B: I don't know what you are talking about . (6)

A: You don't know what you are saying. (7)

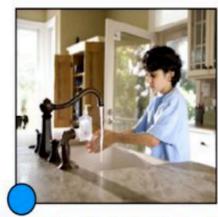
•••

VS

Where Are We Now?

https://www.theverge.com/2016/3/24/11297050 /tay-microsoft-chatbot-racist

woman cooking



man fixing faucet

Zhao, J., Wang, T., Yatskar, M., Ordonez, V and Chang, M.-W. (2017) Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraint. EMNLP

Why NLP is Hard?

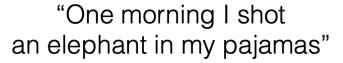
- 1. Ambiguity
- 2. Scale
- 3. Sparsity
- 4. Variation
- 5. Expressivity
- 6. Unmodeled Variables
- 7. Unknown representations

Why NLP is Hard?

- 1. Ambiguity
- 2. Scale
- 3. Sparsity
- 4. Variation
- 5. Expressivity
- 6. Unmodeled Variables
- 7. Unknown representations

Ambiguity

- Ambiguity at multiple levels
 - Word senses: bank (finance or river ?)
 - Part of speech: chair (noun or verb ?)
 - Syntactic structure: I can see a man with a telescope
 - Multiple: I made her duck



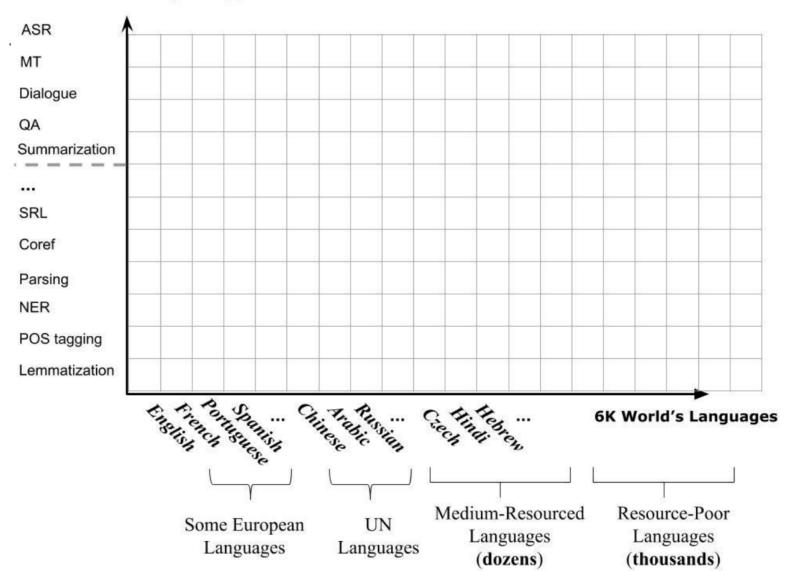
I made her duck

[SLP2 ch. 1]

- I cooked waterfowl for her
- I cooked waterfowl belonging to her
- I created the (plaster?) duck she owns
- I caused her to quickly lower her head or body

• ...

NLP Technologies/Applications



The Challenges of "Words"

- Segmenting text into words
- Morphological variation
- Words with multiple meanings: bank, mean
- Domain-specific meanings: latex
- Multiword expressions: make a decision, take out, make up

Part of Speech Tagging

ikr smh he asked fir yo last name

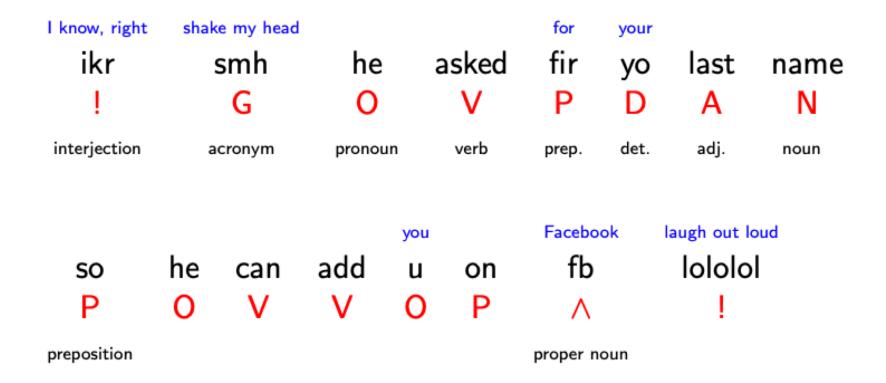
so he can add u on fb lololol

Part of Speech Tagging

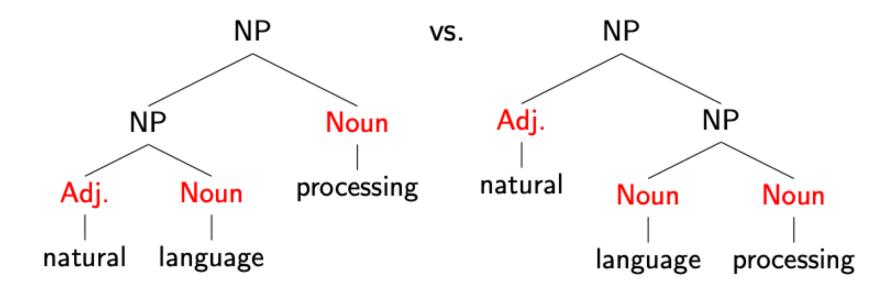
```
ikr smh he asked fir yo last name
```

so he can add u on fb lololol

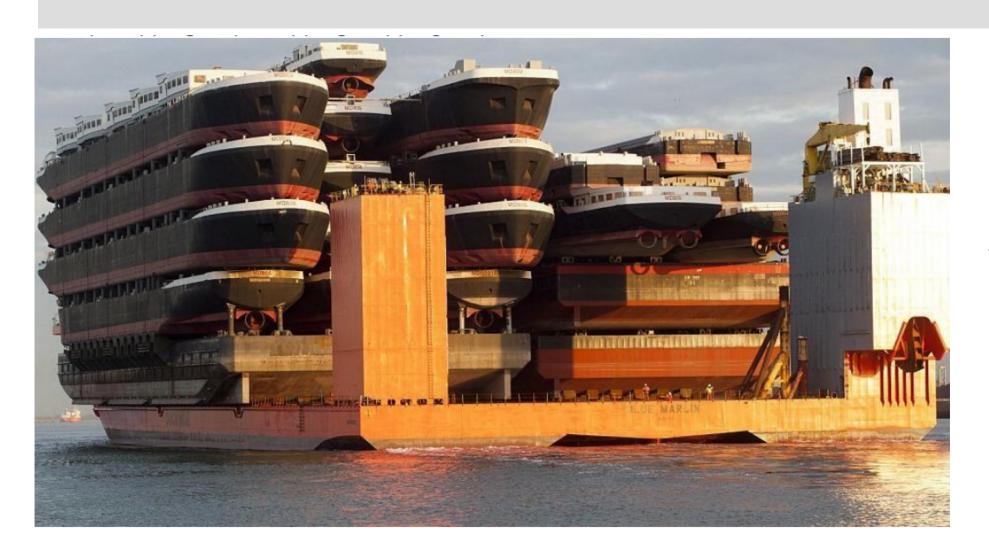
Part of Speech Tagging



Syntax



Morphology + Syntax



A ship-shipping ship, shipping-ships

Semantics

Every fifteen minutes a woman in this country gives birth.

Semantics

Every fifteen minutes a woman in this country gives birth. Our job is to find this woman, and stop her!

– Groucho Marx

Syntax + Semantics

We saw the woman with the telescope wrapped in paper.

Syntax + Semantics

- We saw the woman with the telescope wrapped in paper.
 - Who has the telescope?
 - Who or what is wrapped in paper?
 - An even of perception, or an assault?

Dealing with Ambiguity

- How can we model ambiguity?
 - Non-probabilistic methods (CKY parsers for syntax) return all possible analyses
 - Probabilistic models (HMMs for POS tagging, PCFGs for syntax) and algorithms (Viterbi, probabilistic CKY) return the best possible analyses, i.e., the most probable one
- But the "best" analysis is only good if our probabilities are accurate. Where do they come from?

Corpora

- A corpus is a collection of text
 - Often annotated in some way
 - Sometimes just lots of text
- Examples
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of French/English sentences
 - Yelp reviews
 - The Web!

Rosetta Stone

Statistical NLP

- Like most other parts of AI, NLP is dominated by statistical methods
 - Typically more robust than rule-based methods
 - Relevant statistics/probabilities are learned from data
 - Normally requires lots of data about any particular phenomenon

Why NLP is Hard?

- 1. Ambiguity
- 2. Scale
- 3. Sparsity
- 4. Variation
- 5. Expressivity
- 6. Unmodeled Variables
- 7. Unknown representations

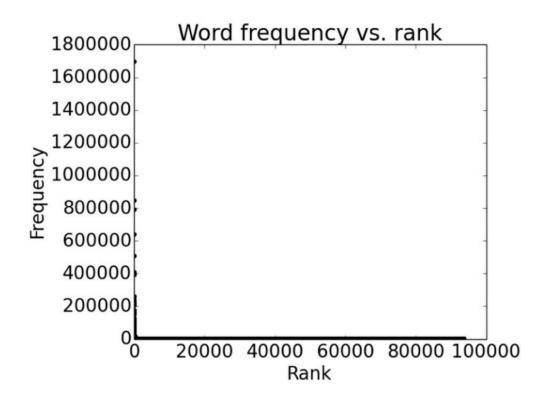
Sparsity

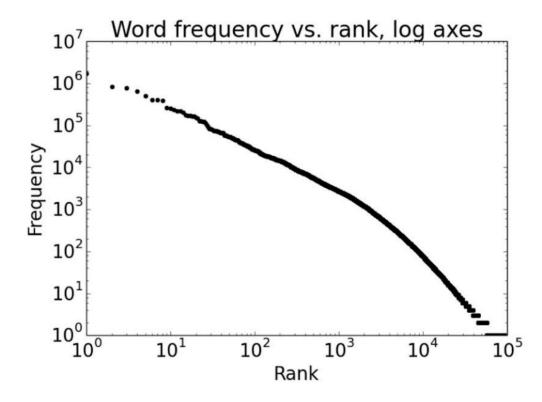
- Sparse data due to Zipf's Law
- Example: the frequency of different words in a large text corpus

any word			nouns	
Frequency	Token	Frequency	Token	
1,698,599	the	124,598	European	
849,256	of	104,325	Mr	
793,731	to	92,195	Commission	
640,257	and	66,781	President	
508,560	in	62,867	Parliament	
407,638	that	57,804	Union	
400,467	is	53,683	report	
394,778	a	53,547	Council	
263,040	I	45,842	States	

Sparsity

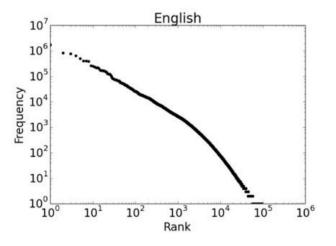
Order words by frequency. What is the frequency of nth ranked word?

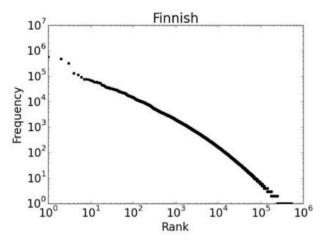


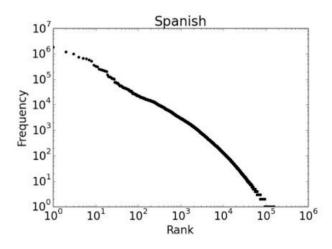


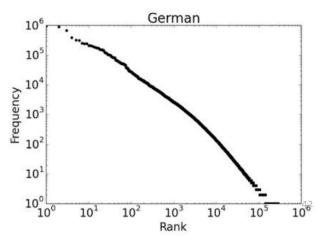
Sparsity

- Regardless of how large our corpus is, there will be a lot of infrequent words
- This means we need to find clever ways to estimate probabilities for things we have rarely or never seen







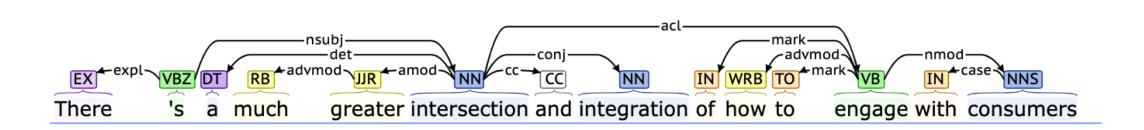


Why NLP is Hard?

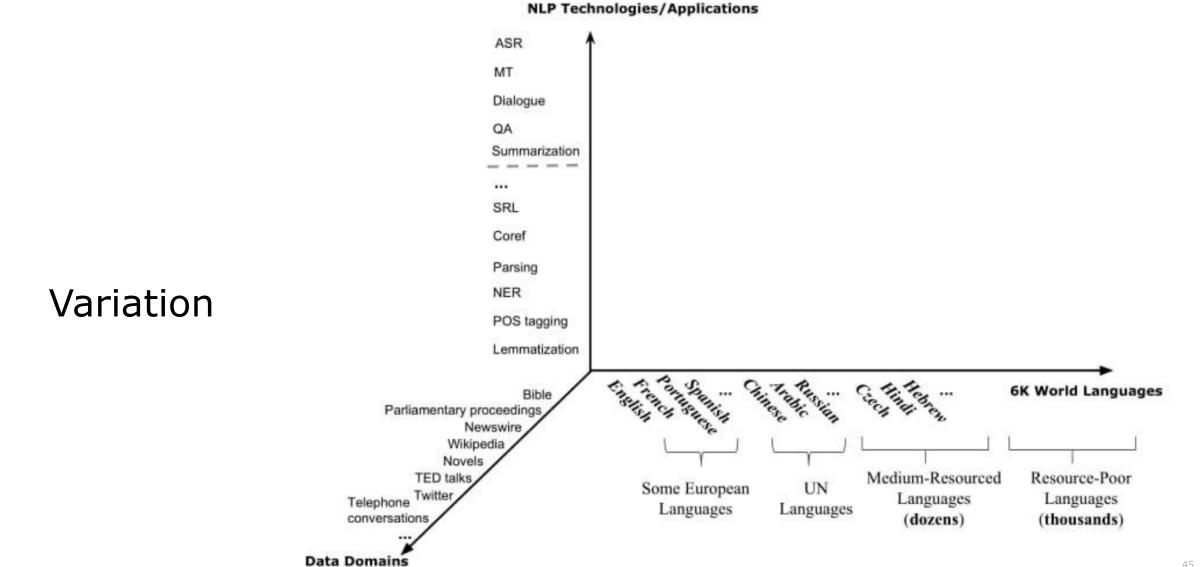
- 1. Ambiguity
- 2. Scale
- 3. Sparsity
- 4. Variation
- 5. Expressivity
- 6. Unmodeled Variables
- 7. Unknown representations

Variation

Suppose we train a part of speech tagger or a parser on the Wall Street Journal



- What will happen if we try to use this tagger/parser for social media?
 - "ikr smh he asked fir yo last name so he can add u on fb lololol"



Why NLP is Hard?

- 1. Ambiguity
- 2. Scale
- 3. Sparsity
- 4. Variation
- 5. Expressivity
- 6. Unmodeled Variables
- 7. Unknown representations

Expressivity

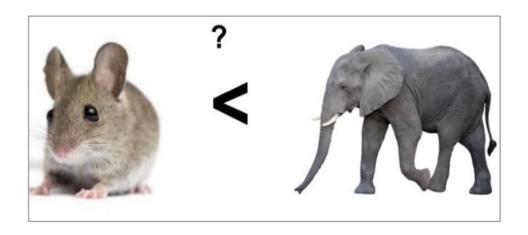
- Not only can one form have different meanings (ambiguity) but the same meaning can be expressed with different forms:
 - She gave the book to Tom vs. She gave Tom the book
 - Some kids popped by vs. A few children visited
 - Is that window still open? vs. Please close the window

Please be quiet. The talk will begin shortly.

Shut up! The talk is starting!

Unmodeled Variables

"Drink this milk"



World knowledge

I dropped the glass on the floor and it broke

I dropped the hammer on the glass and it broke

Unmodeled Representation

Very difficult to capture what is \mathcal{R} , since we don't even know how to represent the knowledge a human has/needs:

- What is the "meaning" of a word or sentence?
- How to model context?
- Other general knowledge?

Desiderate for NLP Models

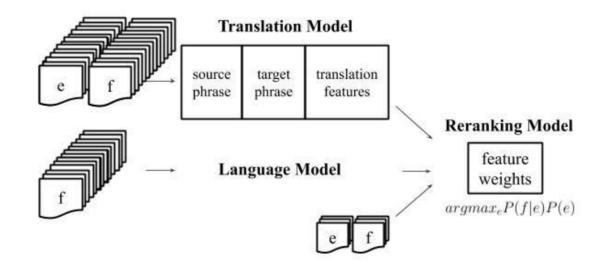
- Sensitivity to a wide range of phenomena and constraints in human language
- Generality across languages, modalities, genres, styles
- Strong formal guarantees (e.g., convergence, statistical efficiency, consistency)
- High accuracy when judged against expert annotations or test data
- Ethical

Symbolic and Probabilistic NLP

Logic-based/Rule-based NLP

transfer ~ 90s direct translation source text

Statistical NLP

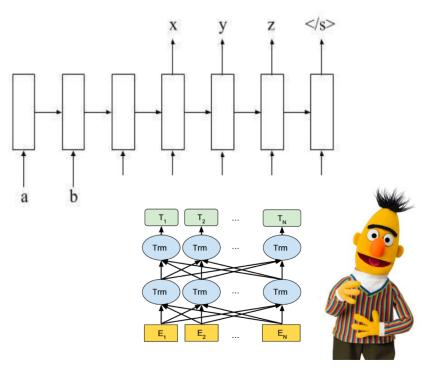


Probabilistic and Connectionist NLP

Engineered Features/Representations

Translation Model source target phrase phrase reatures Language Model feature Reranking Model feature weights argmax_eP(f|e)P(e)

Learned Features/Representations



NLP vs. Machine Learning

- To be successful, a machine learner needs bias/assumptions; for NLP, that might be linguistic theory/representations.
- \blacksquare **\mathcal{R}** is not directly observable.
- Symbolic, probabilistic, and connectionist ML have all seen NLP as a source of inspiring applications.

NLP vs. Linguistics

- NLP must contend with NL data as found in the world
- NLP ≈ computational linguistics
- Linguistics has begun to use tools originating in NLP!

Fields with Connections to NLP

- Machine learning
- Linguistics (including psycho-, socio-, descriptive, and theoretical)
- Cognitive science
- Information theory
- Logic
- Data science
- Political science
- Psychology
- Economics
- Education

Today's Applications

- Conversational agents
- Information extraction and question answering
- Machine translation
- Opinion and sentiment analysis
- Social media analysis
- Visual understanding
- Essay evaluation
- Mining legal, medical, or scholarly literature

Factors Changing NLP Landscape

- 1. Increases in computing power
- 2. The rise of the web, then the social web
- 3. Advances in machine learning
- 4. Advances in understanding of language in social context

Logistics

What is this Class?

Linguistic Issues

- What are the range of language phenomena?
- What are the knowledge sources that let us disambiguate?
- What representations are appropriate?
- How do you know what to model and what not to model?

Statistical Modeling Methods

- Increasingly complex model structures
- Learning and parameter estimation
- Efficient inference: dynamic programming, search
- Deep neural networks for NLP: LSTM, CNN, Seq2seq

Outline of Topics

- Words and Sequences
 - Text classifications
 - Probabilistic language models
 - Vector semantics and word embeddings
 - Sequence labeling: POS tagging, NER
 - HMMs, Speech recognition
- Parsers
- Semantics
- Applications
 - Machine translation, Question Answering, Dialog Systems

Readings

Books:

- Primary text: Jurafsky and Martin, Speech and Language Processing, 2nd or 3 rd Edition
 - https://web.stanford.edu/~jurafsky/slp3/
- Also: Eisenstein, Natural Language Processing
 - https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

Course Website & Piazza

www.cc.gatech.edu/classes/AY2020/cs7650_spring/

piazza.com/gatech/spring2020/cs7650cs4650

Your Instructors

- Instructor:
 - Diyi Yang
 - Assistant professor
 - Research interests: NLP, Computational Social Science
- TAs:
 - Ian Stewart: PhD, Computational Sociolinguistics
 - Jiaao Chen: PhD, NLP/ML
 - Nihal Singh: MSCS, NLP

TA Office Hours

- Ian Stewart: Tuesdays, 2-4pm, CODA C1106
- Jiaao Chen: Thursdays, 2-4pm
- Nihal Singh: Fridays, 9-11am

Grading

- 4 Homework Assignments (45%)
- 1 Midterm (15%)
- 1 Course Project (40%)

• 45% Homework Assignments

- Homework 1: 6%
- Homework 2: 13%
- Homework 3: 13%
- Homework 4: 13%

15% Midterm Exam

- No make-up exam unless under emergency situation
- 40% Course Project
 - Project proposal (2 pages): 5%
 - Midway report (4 pages): 10%
 - Final report (8 pages): 20%
 - Presentation (in class presentation): 5%

Late Polices

- Late Policy
 - 4 late days to use over the duration of the semester for homework assignments only. There are no restrictions on how the late days can be used (e.g., all 4 can be used on one homework). Using late days will not affect your grade. But homework submitted late after all 4 late days have been used will receive no credit.
- No make-up exam
 - Unless under emergency situation

Course Project

- Semester-long project (2-3 students) involving natural language processing either focusing on core NLP methods or using NLP in support of an empirical research question
 - 2-page Project proposal (5%)
 - 4-page Midway report (10%)
 - 8-page Final report (20%)
 - Project presentation (5%)
 - 10-min in-class presentation (tentative)

Other Announcements

Course Contacts:

- Webpage: materials and announcements
- Piazza: discussion forum
- Homework questions: Piazza, TAs' office hours

Computing Resources:

- Experiments can take up to hours, even with efficient computation
- Recommendation: start assignments early

What's Next?

Text Classification