CS 4803 / 7643: Deep Learning

Topics:
— Regularization
— Neural Networks

Dhruv Batra
Georgia Tech



Administrativia

« PS1/HW1 out

— Available later today on Canvas

— Due in 4 weeks B

— Asks about topics coming in the next couple of weeks
— Please please please please start early

— More\details next class

—
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Recap from last time
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Parametric Approach: Linear Classifier

10x1_ 10x3072

> f(x,W) » 10 numbers giving
class scores

e (0008 5]

Array of ng§2x_3 numbers T
(3072 numbers total) W
* parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

) 56 |
\ P
ﬂpﬁ,},’,’?ﬁ3¥- 231
: —izt / 24

Input image
nput image 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56
NN 02 |-05]| 01 | 20 1.1 -96.8 | Cat score
ﬂﬂ’bﬁi" 231 ~——
7Y — 15 | 1.3 | 21 | 0.0 4| 32 | = | 437.9 | Dog score
—f -1.“,_.' : ) 0 025 | 0.2 -0.3 -1_2 61.95 Shlp score
Input image 2

w : -

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Linear Classifier: Three Viewpoints

Algebraic Viewpoint

Input image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Visual Viewpoint
\

One template
per class

Geometric Viewpoint

—

Hyperplanes
cutting up space




]
Recall from last time: Linear Classifier

TODO:

Define a loss function
that quantifies our
unhappiness with the

“

S 3.0 ~0.51 3.42 scores across the training
automobile -8.87 6.04 4.64
bird 0.09 5.31 2 .65 data.
cat 2.9 -4.22 5.1 TI
deer 4.48 ~4.19 2.64 1. Come up with a way of
dog 232 3.58 5.55 efficiently finding the
::fse .06 _44'.4397 __41'_354 parameters that minimize
. ~0.36 —2 .09 _4.79 the loss function.
truck -0.72 -2.93 6.14 (optimization)

Catimage by Nikita is licensed under CC-BY 2.0’ Car image is CC0 1.0 public domain; Erogimage is in the public domain L e T e~

[4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Softmax vs. SVM

L; = —log( iye] )

=

Li =} ,,, max(0,s; — sy, + 1)

S—

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



W[ 0

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores f(z, W)= Wz are:
“Hinge loss”
Syi |
71
cat
'_Z 0 if 5, > s;+1
car ' _j#y' Sj — Sy, —|—% otherwise
O Si — Sy, +

frog '1 I J; i %

| 1 L delta

| i } -
| I score
scores for other classes score for correct class

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

——
L; = —log( > =) Li =), max(0,s; — sy, +1)
A

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
8 = f(a}“ W) P(Y — k|X — g’;z) ., _EE _| Softmax

S] .
Zj € Function

cat | 3.2
car 5.1

frog ﬂj

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
9 S = f(aj,“ W) P(Y — k|X — ng) = _.f—s’“_ Softmax

S] .
& € Function

~_

Probabilities
must be >=0

cat 3.2 24.5

exp

car 51 —|164.0
frog -1.7 0.18

unnormalized
probabilities

V\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

/

s = f(zi; W)

Probabilities
must be >=0

24.5

3.2

exp

P(Y =&|X = xg)

e’k

Zj e’

Probabilities
must sum to 1

0.13 |

51 —164.0

-1.7 0.18

unnormalized
probabilities

normalize

0.87
0.00 |

Z

probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Want to interpret raw classifier scores as probabilities

Softmax
Function




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
- 8 = f(a:z, W) P(Y — k|X — ng) ., _EE _| Softmax

SJ .
Zj € Function

Probabilities Probabilities
must be >=0 must sum to 1
cat 3.2 24.5 0.13

exp

car 51 —[164.0|=™"% 0.87
frog -1.7 018 OOO

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
8 = f(a}“ W) P(Y — k|X — g’;z) = esks_ Softmax

e >_;j €7 | Function
1 Probabilities Probabilities
g L must be >=0 must sum to 1 la=—logk (¥ :@X = i)
— — .
cat 3.2] 24.5 1043 - L = og015]
exp I o =2.04
car 51 ——|164.0|—/={ 0.87 l _

frog -1.7 018 OOO

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s = f(x;; W)|  |P(Y =KX = ;) = <2 Softmax

S] .
Zj € Function

Probabilities Probabilities
must be >=0 must sum to 1

cat 24.5 0.13 | - Li=-log(0.13)
car 51 2.[164. Q| momalze, 0.87 = 2.04

fog |(-1.7 | |0.18 0.00

L;i = —log P(Y = yi| X = )

hoose probabilities to maximize
the likelihood of the observed data

{I\/[Iaximum Likelihood Estimation
C

Unnormalized log- unnormalized abilits
probabilities / logits probabilijes
—~ .

Slide Credit: Fei-Fei Li, Justin Johnson,\Eerena Yeung, CS 231n



Qog-LikeIihood?/ KL-Divergence //C:ross-Entropy
D={(x,85)) RPN~ - 1

gl o BRI
o
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Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
- . — f(aj,” W) P(Y — k|X — ggz) ., _EE Softmax

Sj .
Zj € Function

Probabilities Probabilities
must be >=0 must sum to 1 fo=—IoglP (¥ =gl &’ =)
cat 3.2 24.5 0.13 [ compare— 100

exp

car 51 —[164.0|=™"% 0.87 0.00
frog -17 018 OOO OOO

Unnormalized log- unnormalized probabilitiej Correct

probabilities / logits probabilities [ '/pioij

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

e Want to interpret raw classifier scores as probabilities
| 8 = f(.’Bz, W) P(Y — k|X — ng) ., _EE _| Softmax

SJ .
Zj € Function

Probabilities Probabilities
must be >=0 must sum to 1 le=—lepP (¥ =gl =)
cat 3.2 24.5 0.13 [ compare ~— 1,00
exp normalize Kullback—Leibl
car 51 — 1 640 e 087 udi\fecrgenile v OOO
Dkr(P|Q) =
fog | -1.7 0.18 0.00] =", | 0.00
(0]
Unnormalized log- unnormalized probabilities I Correct
probabilities / logits probabilities ——  probs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
. — f(aj,” W) P(Y — k|X — g;z) ., _EE Softmax

Sj .
Zj € Function

Probabilities Probabilities
must be >=0 must sum to 1

1

. 24.5 0.13|[— comere—1 1.00
car 51 ——164.0| ™| 0.87| cosemory | 0.00

H(P,

g |17] | 0183 (0.00], %20 1 0.00

H(p) + Dk r(P[|Q)

L;i = —log P(Y = yi| X = )

cat

Unnormalized Io/g- unnormalized probabilitiesu Correct
probabilities / logits probabilities { probs
— —_— —_— 0

1 [23]5 O
20)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

—

* (Finish) Loss Functions
. ’Regularization
Neural Networks
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Softmax Classifier (Multinomial Logistic Regression)

—= Want to interpret raw classifier scores as probabilities

s= f(zi; W)| |PY =k X=

e’k

Zj e’

o) =

cat 3.2

5 1 Q: What is the min/max
' possible loss L_i?

car

frog -1.7

Softmax
Function

utting it all together:

—

Maximize probability of correct class P
= —loe P —aplX =i e e
g P(Y = yi ) @— — log(/i?})/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




N e

(
Softmax Classifier (Multinomial Logistic Regression)

e Want to interpret raw classifier scores as probabilities
2 8 — f(wl; W) P(Y = k|X — sz) — €k _ Softmax

SJ .
Zj € Function

Maximize probability of correct class Putting it all together:

Li — — logP(Y — y1,|X — :D?,) @ . 10 esyz's'
cat 3.2 Z 8l )
car 5 1 Q: What is the min/max

' possible loss L_i?
frog -’IJ A: min 0, max infinity

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
- 8 = f(a:z, W) P(Y — k|X — ng) ., _EE _| Softmax

55 .
Zj € Function

Maximize probability of correct class Putting it all togetrirj
Sy-
e

B L;i = —log P(Y = 4| X = ;) L =-1 : E
cat ’f% 0 3.2 Og(gj@)

car J 5.1 Q2: At -|n|t|aI|zat|on a.II S WI||- be )
gh approximately equal; what is the loss? ﬁaj(_,
~——— d Y — l<

frog":go?'1.7, -

- fﬁ(j}(

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
8 = f(.’Bz, W) P(Y — k|X — ng) ., _EE _| Softmax

SJ .
Zj € Function

Maximize probability of correct class Putting it all together:
Lz‘:—l PY:iX::Ei o B e’Yi

- og P(Y = yil ) L log( o )

Q2: At initialization all s will be
car : :

approximately equal; what is the loss?
frog A:log(C), eg log(10) = 2.3

T N N————

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax vs. SVM

L; = —log( iye] ) Li =} ,,, max(0,s; — sy, + 1)

— —_—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax vs. SVM ) inge Iossﬂ(SVi)\)

-2.85
matrix multiply + bias offset ‘ 7 max(0, -2.85 - 0.28 + 1) + b
> | 086 |/ max(0,0.86 - 0.28 + 1)
0.01 | -0.05 0.1 0.05 -15 0.0 1 / ~
// /0 e ( 1.58
0.7 0.2 0.05 | 0.16 22 0.2 J
+ //l S— ~ ——=——2_=?
0.0 | -045 | -0.2 | 0.03 44 -0.3 |\ cross-entropy loss (Softma\x)/?
] e — .
4 ——\ ‘/] \{ -2.85 0.058 0.016
W 56 ’ b \
exp normalize \f
086 | —p| 236 | — 5| 0.631 | ~109(0-353)
$Z (to sum =
to one) 0.452
_ | 0.28 1.32 0.353
Y; | 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



a

\ eSyz- 2

e ]Li:Z#yﬁrﬁX(OaSj—Syﬂrl)
¥y ‘><’_\ —

S—

S8 ijr‘rre;S S Q: Suppose | take a datapoint
fwicz% f Z ] and | jiggle a bit (changing its

. score slightly). What happens to
10,9, 9] the loss in both cases?
10, -100, -100] E—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
* (Finish) Loss Functions

* Regularization
 Neural Networks
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Regularization

Data loss: Model predictions
should match training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization
MLF Jog P()

i
1 & /\
)

N J

N/

Y o~
Eata |0531.MC£§|_9LediCti0”S‘) Regularization: Prevent thg@z

should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Regularization

A= regularization strength

L/ | (hyperparameter)

N
1
ZNZ f (i, W), 3:) + AR(W)
\ =

_J W_/
N\ f—
U Y
Data loss: Model PredlCthﬂS Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- 0000000000
Regularization Intuition In

Polynomial Regression
¢R

@‘@
O
© @

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Polynomial Regression

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Polynomial Regression
%: Ny + N 1

2
< W 7 W)rl Wy X

W b +3¢”&1& -t
- : =
B U WA 16D

2
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Polynomial Regression
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>Error Decomposition

horse _Perso

(C) Dhruv Batra 39



Polynomial Regression

« Demo: https://arachnoid.com/polysolve/ C/%‘(\1>

— You measure average speeds of the best runners at different ages.

E You are a scientist studying runners.

- Data: Age (years), Speed (mph)
-d406 |
- 159
— 20 11
— 2512
- 2913
— 40 11
— 5010

=609

(C) Dhruv Batra — 40



https://arachnoid.com/polysolve/

- 0000000000
Regularization

A = regularization strength
(hyperparameter)

LOW) = — 5" Li(f (w1, W), i) + AR(W)

E i

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization

\( .= regularization strength

E h perparameter)
L(W)\= NZL (i, W), 1:) ‘k J

Data loss: Model predictions
should match training data

Regularlzatlon: Prevent the model
from doing too well on training data

Simple examples /
L2 regularization: R(W) :’ﬁ w2,

(
L1 regularization: R(W) = >, >, |[Wi|

Elastic net (L1 + L2): R(W) =X, 32, BW2, + Wiy

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization

A = regularization strength
(hyperparameter)

:%ZLZ f(:lj‘z, ) yz)

‘ ‘ 1=1 ~—

Data loss: Model predictions  Regularization: Prevent the model

should match training data from doing foo well on training data
r
imple examples More complex:
fz regularization: R(W) = >, >, W7, Dropout
1 regularization: R(W) = >, >, |Wk,| Batch normalization
Elastic net (L1 + L2): R(W) = >, >, BW;, + |Wii| | Stochastic depth, fractional pooling, etc
- T~
\—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Regularization

A = regularization strength
(hyperparameter)

LOW) = 3" Ll (@i, W), ) + AR(W)

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why regularize?
- Express preferences over weights

[- Make the model simple so it works on test data
- Improve optimization by adding curvature

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

- We have some dataset of (x,y)
- We have a score function: s = f(z; W) ! Wa
-  We have a loss function:

Softmax

e’Yi

.:_log(z eJ)

SVM regularization loss
W— 1
Zj#yz ma'X 0 Sj Sy + ]- scorefunchon‘u , v

-

.

-

f(mi,W) data loss ’L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

How do we fincﬂhe best W?

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

LZ _ 1Og( Zj esj ) SVM regularization loss

g s . 4w :
LZ — Zj#yz IIlaX(O, 8] — Syz _*_ ].) scorefuncholuf(mi’w)l i 2

-
-

Y

L = % SV Li + R(W) Full loss L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Next: Neural Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far: Linear Classifiers

> Class

T Qx -




-]
Hard cases for a linear classifier

Class 1: Class 1: Class 1:
First and third quadrants 1<=L2norm <=2 Three modes
Class 2: Class 2: Class 2:

Second and fourth quadrants Everything else Everything else

%/ _

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Aside: Image Features

f(x) = Wx
: —MMMMW Class
. scores
3 L [Ee_a_t’m;eRepresentatlon —




Image Features: Motivation
1 h

Cannot separate red
and blue points with
linear classifier



Image Features: Motivation—

Aolle
r | (]
—_ ®
f(x, %) ={ (r(x, y), 8(x, y)) i .‘:g%

)
(]
()
r
° f %
°® e
(] o®
\ °
Cannot separate red After applying fJ?ature
and blue points with

transform, poinf{s can
be separated by linear
classifier

linear classifier
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Example: Color Histogram




- 0000000000
Example: Histogram of Oriented

Gradients (HoG)

Example: 320x240 image gets divided
into 40x30 bins; in each bin there are
9 numbers so feature vector has
30*40*9 = 10,800 numbers

Divide image into 8x8 pixel regions
Within each region quantize edge
direction into 9 bins

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



-]
Image features vs Neural Nets

O‘N f
>

Feature Extraction | = 1o numbers giving

scores for classes
_

training |

| —t 3 |' . % | \“ [ X J Krizhevsky, Sutskever, and Hinton, “Imagenet classification
J { Y | N | N o 3 4 | 4\ with deep convolutional neural networks”, NIPS 2012.
\[ ' A W || Eo \ / Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
. R b 157 ) 55 v T \/ 26% \ / io%s \dense sproduced with pe i
T \ ) G 128 \/ Sy ¢ Reproduced with permission.
,, e A A\ |82 bt
1 [ 3 - ]
] 27 ';. s 1L-NT
A\ . S
\ 1 Ma L_| L
1 7 Ma pooling 04
pooling pool

>

e 10 numbers giving
scores for classes

training A\

S
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Error Decomposition

horse “perso

Multi-cJdss Logistic Regression e)(a\\QQ’
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e
Neural networks: without the brain stuff

(Before) Linear score function: f = WEB
2 (1
NINE
C~—
8
N

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

(T,

(Before) Linear score function: f W

(Now) 2-layer Neural Network f Wz ax!O Wix)

S O O o

'—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

—~ ()
(Before) Linear score function: f — Wa h’

/ —
(Now) 2-layer NeuraliNetwork = W fmax((), W1 z
7 g ¥ —

f ) g s
6 WA i,

0
/& >

307

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

(Before) Linear score function: f — Wa

(Now) 2-layer Neu@/Néleﬁk\/\:@ aX(O,l Vi)
( ~ 7

5 L]

plane car bird deer
— — ——

e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff
|
5[ @ S
— [ + 6@

(Before) Linear score function: f — Wa
(Now)/2-|ayer Neural Networg ) f =W, max (0, Wiz)

oﬁ;ladygr Neural Network f\
=¥ mi (0, Ws m_gic(o,}‘}%ml))
P/q -
i

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Multilayer Networks

. ka;aded\“neurorg’
« The output from one layer is the input to the next

 Eachlayer has its own sets of weights

[
AV )

output layer
3 input layer

idden layer ( hidden layer 1 hjdden layer 2
)

h
O = ) hoa';[w N L‘L)

(C) Dhruv Batra 66




input layer

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

|

hjdden laygr

[00 %3072

output layer

ully-connected”

Neural networks: Architectures
(1
'\

v =

)

{
®

s
ST

g
"vﬁv ‘*@’
)‘\ .A . output layer
input layer
himerz

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

:‘?’a
R

\
)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




his image by Eotis Bobolas is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

& dendrite

presynaptic
terminal

cell ———
body

Impulses carried away

from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

l/—'—'\

J

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\

cell ———
body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

/

presynaptic
terminal

axon

Impulses carried away
from cell body

war o

cell body

f (Z w;T; + b)

Wo

@ syn

a!<on from a neuron y
w1

Wo T2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

output axon

activation
function



https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

& dendrite
A presynaptic
terminal

axon

cell ———
body

Impulses carried away

from cell body o wo
@ synapse
axon from a neuron .

This image by Felipe Perucho
is licensed under CC-BY 3.0

woT o
; (gon)
. w1 i
0.6 output axo;
04 sigmoid activation function activation
05 1 Wy Ty function
oo =5 (]'\ 5 il) HF

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Be very careful with your brain analogies!

Biological Neurons:

e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical

system
e Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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A quick note
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Fig. 4. (a) Not recommended: the standard logistic function, f(z) =1/(1 +e~*). (b)
Hyperbolic tangent, f(z) = 1.7159 tanh (%a')

(C) Dhruv Batra Image Credit: LeCun et al. ‘98 76



Rectified Linear Units (RelLU)

0.75

— Logistic | | | '

Training error rate

Epochs

[Krizhevsky et al., NIPS12]

(C) Dhruv Batra 77
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Demo Time

 https://playground.tensorflow.org



https://playground.tensorflow.org/

