CS 4803 / 7643: Deep Learning

Topics:

— Image Classification
— Supervised Learning view

— K-NN

Dhruv Batra
Georgia Tech
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Administrativia

* Piazza
— 165/222 people signed up. Please use that for questions.

« Gradescope/Canvas
— Anybody not have access?
— See note on Piazza
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Python+Numpy Tutorial

Python Numpy Tutorial

This tuterial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great general-
purpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it
becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will
serve as a quick crash course both on the Python programming language and on the use of Python for scientific
computing.

tp://cs231n.qithub.io/python-numpy-tutorial/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://cs231n.github.io/python-numpy-tutorial/

Plan for Today

1 Image Classification
Supervised Learning view
| K-NN

V

 Next time: Linear Classifiers

(C) Dhruv Batra 4



Image Classification



Image Classification: A core task in Computer Vision

(assume given set of discrete labels)

{dog, cat, truck, plane, ...}

> cat

his image by Nikita is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

- 0000000000
The Problem: Semantic Gap

[[105 112 8 111 104 0995 106 "‘%87]
S8 102 106 1@ 8 183 99 105 123 136 110 185 94 85]

[ 76 B85 9@ 105 128 185 B7 96 85 99 115 112 106 103 99 B85]
[ 99 81 81 93 120 131 127 100 65 98 182 99 96 93 181 594]
[1e6 91 61 64 69 91 B8 85 101 107 189 98 75 B84 096 95]
[114 188 B85 55 55 69 64 54 64 B7 112 120 98 74 B84 091]
[133 137 147 103 65 B1 B@ 65 52 54 74 B84 182 93 B85 B82]
> [128 137 144 140 189 95 86 70 62 65 63 63 6@ 73 86 101
y [125 133 148 137 119 121 117 94 65 79 B0 65 54 64 72 098
o5 [127 125 131 147 133 127 126 131 111 96 B89 75 61 64 72 B84]
2 [115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78
[ 89 93 9@ 97 108 147 131 118 113 114 113 109 106 95 77 B8e]
[ 63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]
[ 62 65 B2 B89 78 71 B0 101 124 126 119 101 107 114 131 119]
[ 63 65 75 B8 B89 71 62 81 120 138 135 185 B1 98 110 118]
[ 87 65 71 B7 186 95 69 45 76 130 126 187 92 94 185 112]
[118 97 82 86 117 123 116 66 41 51 95 93 B9 95 182 187]
[164 146 112 B0 82 120 124 104 76 48 45 66 BB 101 182 109]
[157 178 157 120 93 86 114 132 112 97 69 55 70 B2 99 094]
[130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 B86]
[128 112 96 117 150 144 120 115 104 107 182 93 87 81 72 79]
[123 187 96 86 83 112 153 149 122 109 104 75 B0 107 112 99]
[122 121 182 8@ 82 B6 94 117 145 148 153 182 58 78 92 107]
\ [122 164 148 103 71 56 78 83 93 103 119 139 182 61 69 84]]

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g.-800 x 600 x3
This image by Nikita is (3 channels BG\B)

licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint

variation

[[105 112
[91 98
[76 85
[ 99 81
(106 91
[114 108
[133 137
[128 137
[125 133
[127 125
[115 114

93
94
99
101
96

85
86
72
72
72
77
115
131
110
105
102
102
99
69
72
112

9.
[

5

9

his image by Nikita is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

All pixels change when
the camera moves!


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: lllumination

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

This image by Umberto Salvagnin This image by Umberto Salvagnin Loslmege  saeoear Thisimage b Lom Tha-»
is licensed under CC-BY 2.0 is licensed under CC-BY 2.0 licensed under CC-BY 2.0 icensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

Ihis image by jonsson is licensed
under CC-BY 2.0

This image is CC0 1.0 public domain This image is CCQ 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

An image classifier
nry

def classify_image(image):

return class_label ?ﬂt, M

N

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Attempts have been made (

Find corners> }\V é 4\ >

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ML: A Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

S———

Example training set

def train(images, labels): alrplane —-
# Machi rning!
return {model automoblle.
bird ,
def predict(model, test—images): cat

# Use FreiNct labels
return ,test_labels deer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Supe rv |sed Learnlng

( (w3 { l, .. /c(%
. Input-;’ Al /R (images, text, emalls ST w 3
OL L

- Output: y C{H j (spam or non-spam...)

(Unknown) T@rget Funetion 'Z
- i X=2>Y theW/_rggﬂty)

« Data
— { (X1,y1), (X2, Y2) - (XNsYN) )

Yoy
it
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/ @}g BN /32/

=
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Supervised Learning

. )Input: X (images, text, emails...)
. )Output: y (spam or non-spam...)

. )(Unknown) Target Function
- . X=2Y (the “true” mapping / reality)

o/ Data
— { (X1,¥1), (X2,¥2), .., (Xn,YN) }

* | Model / Hypothesis Class
~ H={h: X> Y}
- e.g.y = h(x) = sign(w™y)

——

| Learning = Search in hypothesis space
— Find best ¢ in model class.

(C) Dhruv Batra 20



Learning is hard!

A Learning Problem

x] ——>=>

#&Fr\ f w
%

x4 ——>=

SV

o
|

Unknown
——=  y=1(x1l, x2,x3, x4)
Function
CQ, TR A Y; (L (9,

Example &1 Z2 33_31{ EI | I Y
o ot oo © | /@0/1
9 a0 1 0 0|0
,<3 0 0 1 1|14

41 L 0 0 1|1] [G

5 01 1 00 s

6 1 1.0 00

7 0O 1 0 1|0

(C) Dhruv Batra
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Learning is hard!

* No assumptions = No learning
e

~—m——
A Learning Problem

x] ——>=>
v — =1 Unknown
X3 —>>
x4 —= Function

— y =1(x1, x2, x3, x4)

Example 1 x9 3 x4 |y
1 0O 0 1 010
2 0 1 0 010
3 0 0 1 1|1
4 1 0 0 1]1
5 0 1 1 010
6 1 1 0 010
7 0O 1 0 1|0

(C) Dhruv Batra 22
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Procedural View

* Training Stage:
— Training Data { (x;,y;) } 2 h (Learning)

« Testing Stage
— Test Data x = h(x) (Apply function, Evaluate error)

(C) Dhruv Batra 23



-
Statistical Estimation View

 Probabilities to rescue:
— Xand Y are random variables

- D= (X1’y1)’ (X2’y2)’ = (XN’yN) = P(X’Y)

* |ID: Independent Identically Distributed
— Both training & testing data sampled IID from P(X,Y)
— Learn on training set
— Have some hope of generalizing to test set

(C) Dhruv Batra 24
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Error Decomposition

@ Reality

(C) Dhruv Batra 26



E%rror Decomposition
;Q Jriexnet |

3
/' .y‘; ) FC 4096
7
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LB U{\,\ T
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Error Decomposition

horse “pPerso

&/Iulti—class Logistic Reg@n

| Softmax |

(C) Dhruv Batra 28



VGG19

S ftmax
FC 1000
FC 4096

FC 4096

N 2 >
horse _Perso
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Error Decomposition

/ . )ABproximation/Modeling Error

— You approximated reality with model

Estimation Error
— You tried to learn model with finite data

) . / Optimization Error

— You were lazy and couldn’t/didn’t optimize to completion

| Bayes Enor

— Reality just sucks

(C) Dhruv Batra 30



First classifier: Nearest Neighbor

D

def train(images, labels):

return model
—

def predict(model, test_images):

return test _labels

Memorize all

"| data and labels
]

)

Predict the label

> of the most similar

training image\J

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

-
airplane 5 ) o 0 B == 5 o
ile 3 . E?ﬂ
bird CAREK] EETHKE
cat I T gt S R O
deer -?m£= !
dog EEREFSEER AN
g DIESa®”EREEE
horse  jugy v I i O ) I G R
oip [
Py >

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example Dataset: CIFAR10

10 classes

50,000 training images
10,000 testing images

B o

airplane

Test Jos

Va

ﬂ" ; NQJ’!E’H.FEI
S-AEEEREREEE
FEPE & ‘?‘ TSEZN &
&~ 25 E N AR
."’ .’.F.L"E!

1ges and nearest nelghbors

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Nearest Neighbour

n
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Nearest Neighbour
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ﬂD_SLa,DQe/I\/IemcmL-based Learning]

Four things make a memory based learner:
» A distance metric A%, 7@

3

e How man neighbors to look at? * - - ¢
g k/—\/_w

* A weighting function (optional)

* How o fit with the local points?

(C) Dhruv Batra Slide Credit: Carlos Guestrin 36
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1-Nearest Neighbour

Four things make a memory based learner:

A distance metric
— Euclidean (and others
Eut ( ne )

* How many nearby neighbors to look at?
-1

* A weighting function (optional)
— unused

* How to fit with the local points?

— Just predict the same output as the nearest neighbour.
\__——— o —

(C) Dhruv Batra Slide Credit: Carlos Guestrin 37
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k-Nearest Neighbour

Four things make a memory based learner:

* A distance metric
— Euclidean (and others)

* How many nearby neighbors to look at?

- k.

* A weighting function (optional)
— unused

* How to fit with the local points?

— |Just predict the average output among the nearest
neighbours.

(C) Dhruv Batra Slide Credit: Carlos Guestrin 38



1-NN for Regression

& ‘ %\9\
) P
SEL @ & S—
B e R
g 3
Here, this is
\ ° the closest
$Px datapoint

(C) Dhruv Batra Figure Credit: Carlos Guestrin

39
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Distance Metric to compare images

L1 distance:  di(li,Ix) = Ep: 7 - 13
test image training image

56 | 32 | 10 | 18 10 | 20 | 24 | 17

90 | 23 | 128 | 133 8 | 10 | 89 [ 100

24 | 26 | 178 | 200 i 12 | 16 (178 | 170

2 | 0 255|220 4 | 32 (233|112

pixel-wise absolute value differences
~— —g

46 | 12 | 14 | 1
82 | 13 | 39 | 33
= 12 |10 | 0 | 30
2 | 32 | 22 | 108

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

dd
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import numpy as np . .
Nearest Neighbor classifier
class NearestNeighbor:
def init ( )
pass

ef train( f, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N """

;

def predict( XS
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Lf.Xtr
Lf.ytr

Ypred = np.zeros(num test, dtype = self.ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances) # L » t
Ypred[i] = f.ytr[min_index]

return Ypred

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def _init  (self):

pass
def train(self, X, y): . .
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ |\4€3rT1CJFIZZEB tr53|r1|r1£3 (jEitEﬁ
elf.Xtr = X 7 7
Lf.ytr e

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances) # the index t]
Ypred[i] = Lf.ytr[min_index] # predict t

return Ypred

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



import numpy as np

Nearest Neighbor classifier
class NearestNeighbor:
def __init_ (self):
pass

def train(self, X, y):

" X is N x D where each row is an example. Y is 1l-dimension of size N """
X
y

elf.Xtr
self.ytr

def predict(self, X):
" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

for 1 in xrange(num._test): For each test image:
¥ uting the £ distence fsum of @ Vel it e Find closest train image
Predict label of nearest image

distances
min index
Ypred[i] =

= .sumnp.abs(self.Xtr - X[i,:]), axis = 1)

n

return Ypred

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



import numpy as np . .
Nearest Neighbor classifier
class NearestNeighbor:
def init ( )
pass

~

Q: With N examples,
def train(self, X, y):

""" X is N x D where each row is an example. Y is 1l-dimension of size N """ r1()\A/,féiéii_élffi-lffii[)ir]EJ
e Dacieiass s nember he training ca and prediction?

X e

y —

Lf.Xtr
Jytr

ef predict( XS
""" X is N x D where each row is an example we wish to predict label for
num_test = X.shape[0]

Ypred = np.zeros(num test, dtype = r.ytr.dtype)
for i in xrange(num test):

distances

= np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances) # t t
Ypred[i] = .ytr[min_ index]

return Ypred

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



import numpy as np

class NearestNeighbor:
def init ( )
pass

def train( A
" X is N x D where each row is an example. Y is 1-dimension of size N """

Xtr = X
ytr =y
def predict( XS

" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Ypred = np.zeros(num test, dtype

for i in xrange(num test):

distances
min index

return Ypred

.ytr.dtype)

np.sum(np.abs( Ktr - X[i
np.argmin(distances)

Ypred[i] = .ytr[min_index] #

o)), axis

Nearest Neighbor classifier

Q: With N examples,
how fast are training
and prediction?

A: Train O(1 )J
predict O(N) ——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



import numpy as np

Nearest Neighbor classifier
class NearestNeighbor:
def init ( )
pass

Q: With N examples,
def train( : Xy y)s . .
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ r]()\A/ fEiE;t are tr53|r1|r1§3

Xtr = X and prediction?

ytr =y
detllll?redj.ct( o X5 | | | A: Train 0(1),
num_)t(eii ! ;'zh\;gz[gleach row is an example we wish to predict label for oredict O(N)
}pred = np.zeros(num test, dtype = .ytr.dtype)
- This is bad: we want
for 1 in xrange(num_test): classifiers that are fast
’ L1 dist | at prediction; slow for
gt o M e training is ok
Ypred[i] = .ytr[min_index] #

return Ypred

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What does this look like?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Nearest Neighbour

« Demo
— http://vision.stanford.edu/teaching/cs231n-demos/knn/

(C) Dhruv Batra 49


http://vision.stanford.edu/teaching/cs231n-demos/knn/

Parametric vs [Non-Parametric|Models

* | Does the capacity (size of hypothe3|s class) grow

with size of training data? }\ X -
— Yes = Non-Parametric Models
— No = Parametric Models —

(C) Dhruv Batra 50



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
di(L, L) =) |I? - 17|

f

/

o>

Slide Credit: Fei-Fei Li, Justin Johnson,

L2 (Euclidean) distance
G By = Z T

[ P

Serena

-
N

/

Yeung, CS 231n
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Hyperparameters

What is the best value of k to use?
What is the best distance to use?

)

These are hyperparameters: choices about
the algorithm that we set rather than learn

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-]
Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about
the algorithm that we set rather than learn

Very problem-dependent.
Must try them all out and see what works best.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

Your Dataset

——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the data perfectly on training data

Your Dataset

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-]
Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the data perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose

hyperparameters that work best on test data :——/"'ﬂ
train A test
! ——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the data perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose BAD: No idea how algorithm
hyperparameters that work best on test data will perform on new data
train test

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the data perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose BAD: No idea how algorithm
hyperparameters that work best on test data will perform on new data
train test
Idea #3: Split data into train, val, and test; ch
Better'
on tes <, 1= AC C
traln ‘ valldatlon test ~
4
[ & ‘ —

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

Your Dataset

Idea #4:|Cross-Validation: |Split data into folds,
try each fold as validation and average the results

-
-:1 fold 1 fold 2 fold 3 test 7
r fold 1 fold 2 fold 3 test
-
fold 1 fold 2 fold fold 4 fold 5 test

Useful for small dat s, but not used too frequently in deep learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Setting Hyperparameters

Example of
‘ _ Crossvalidationonk . 5-fold cross-validation
for the value of k-

031

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

\ " \ . ‘ ] (Seems that k ~= 7 works best
L ” for this data)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Scene Completion peyes s eros sicorapto

Original
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... 200 total
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Context Matching

Hays and Efros, SIGGRAPH 2007
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Problems with Instance-Based Learning

« EXxpensive
— No Learning: most real work done duri ing
— For every test sample, must search through all dataset —

¢-—_\

very slow!

— Must use tricks like approximate nearest neighbour search
_—‘_”\

* Doesn’t work well when large number of irrelevant

features
— Distances overwhelmed by noisy features

 Gurse of Dimensionality
— Distances become meaningless in high dimensions

— (See proof next)

(C) Dhruv Batra 73



k-Nearest Neighbor on images never used.

- Very slow at test time
- Dlstance metric ' ' tive

Original Boxed

—

(all 3 images have same L2 distance to the one on the left)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/

k-Nearest Neighbor on images never used.
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Curse of Dimensionality

 Consider: Sphere of radius 1 in d-dims Z’L

\\

4 +]
» Consider: an outer £-shell in this sphere

J A
. What is hell volume |
Sphere volume]
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(C) Dhruv Batra

volume fraction

Curse of Dimensionality
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Figure Credit: Kev?h Murphy
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K-Nearest Neighbors: Summary

In Image classification we start with a training set of
Images and labels, and must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on
nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set; only run
on the test set once at the very end!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



