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— Generative Adversarial Networks (GANSi
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Generative Adversarial
Networks (GAN)



Types of Learning

Supervised learning
— Learning from a “teacher”
— Training data includes desired outputs

Unsupervised learning
— Discover structure in data
— Training data does not include desired outputs

—

« Reinforcement learning
— Learning to act under evaluative feedback (rewards)
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Taxonomy of Generative Models
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- MADE Variational Markov Chain

- | PixelRNN/GNA Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

PixelCNNs define tractable density function, opti'rgize likelihood of training data:

po(zT) = ﬁpé’(mi'wl,---,wi—l) ?6(1’

VAEs define intractable density function with latent z: 2 %>
[ po(amotai)i: R (L2

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

l@: Hp9($¢|zc1,...,:vz-_1)

VAEs define intractable density function with latent z:

(@)= [ poomalz)i:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

p@(m) — Hpe(mikvl, ceuy :L‘z'_l)
=1

VAEs define intractable density function with latent z:

po(a) = [ po(Ipo(al2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

{GANSZ don’t work with any explicit density function!

5 @ /’%(LB

TETENN: SR

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Generative Adversarial Networks (GANS)

GANSs are a combination of the following ideas:

—

.[Learning to Sampé{
(Higrl-le/ve_l_)_Connection to Inverse Transform Sampling

2. Adversarial Training

£’> “Reparameterization” '@v
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Easy Interview Question
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Slightly Harder Interview Question

K z0O
| give you u~ U(0,1) Z}tt:j
‘-g (q/‘(l d -(‘.'/(
* Use u to produce a sample x ~ Cat(m) ,' k,wﬂ*j
o ‘
[
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Harder Interview Question

« | give youwu;_U(O,1)

« Use u to produce a sample x ~ Fy(x)
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Inverse Transform Sampling

. Inverse transforming sampling for normal distribution

o

rd

— pdf flz)
15 T
— cdf Fiz)= fit) di
\“’ | = ppfF{x)
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Harder Interview Question

e | give you u~ U(0,1)

-—'\

« Use u to produce a sample x ~(F_>I(x) }/

M
/ I
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Generative Adversarial Networks
Jencratl INCSLWL

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this! T —

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to

tr/aigWution.

Q: What can we use to
represent this complex
transformation?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Output: Sample from

Q: What can we use to
training distribution

represent this complex
transformation?

Generator
_ Network

x
Input: Random noise | QU 2z« « O 2y U( >

N

?

A: A neural network! u

)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Generative Adversarial Networks (GANS)

GANSs are a combination of the following ideas:

1. Learning to Sample
Connection to Inverse Transform Sampling

@ Adversarial Training
Advelsdlld

3. “Reparameterization” Trick
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e
Training GANs: Two-player game

lan Goodfellow et al., “Generative

} —~ 3 P Lz l j/> Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

—_—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images i

B_éalorl%}_e P(M}/X/

oL

Real Images
from training set)

N

iscriminator Network

Fake Images
(from generator) |
Generator Network

S e

Random noise yA
-\/——d

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real

Train jointly in minimax game 'D .7KP L}\Q.si,\ Dt

Minimax objective function: T R;'UU )_C,>

r%in nlgax [Echpd ta 108 D9d( ) + EZNP(Z) log 1 o Ded -)
g d <

N

nd fake images

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function: .

min max

1in X |Egnpy,., 108 Do,(2) + Eenp(e log(1 — Do, (G, (2)))
g d |_|_l [ ]

Discriminator output Discriminator output for
for real data x

generated fake data G(z)

meen,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs.\Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the distminator by generating real-looking image
Discriminator network: try to distinguish between real and fake images 9//_ BL

Train jgintly in minimax game L( 90\ 9‘9 o
Discriminator outputs likelihood in (0,1) of real |mag/b 93 a &

ax E:crvpdam log Ded( ) + IE‘:zmp(z) log(l _IDGd (GGg (Z))I)]

iscriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (\@ wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

- Generator_(6,) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

I%in I%&X [Emrvpdaw log Dy, (33) + ]Ezrvp(z) log(l — Dy, (Geg (z)))]
g d

Alternate between: - i
1. Gradient ascent on dlifflﬁ itj XU @8 £ /é’\/\(e &
néax []E-TNPdam log Dfﬁ (SL‘) + IEzr\ap(z) log(1 — D9d (Gag (Z)))}

2.\ Gradient descent on generatow (94 (a 5“@51
< y;in\EZNpsz) log(1 — Dy, (Ggg (2)))

c-t

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




e
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

I%in I%aax [Emrvpdata log Dy, (33) + IEzrvp(z) log(l — D, (Geg (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator
Gradient signal

max [ExNPdata log Dy, (2) + Eznp(z) log(1 — Do, (Go, (Z)))} dominated by region
¢ where sample is
2. Gradient descent on generator already good

1 — : | [— oe\-DGe)]|
r%inEsz(Z) log(1 - (GG (2))) When sample is likely:| ,

fake, want to learn

In practice, optimizing this generator objective from it to improve
does not work well! generator. But
gradient in this region::
is relatively flat! </ I

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

I%in I%aax [Emrvpdata log Dy, (33) + IEzrvp(z) log(l — D, (Geg (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

InBaX [ExNPdata log Ded (SE) + EZNP(Z) log(l B Ded (G69 (Z)))}

2. Instead: Gradient asce?t\ on generator, different objective |
2x[E. () 108(Dou (Go, () j -
— /

Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

-3}

L
0.0 0.2

Low gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

minmex (B, 18 D, (3) + Exny(c) (1 — Do, (Go, ()]
g d Aside: Jointly training two

) networks is challenging,
Alternate between: can be unstable.

1. Gradient ascent on discriminator Choosing objectives with
meax [Evapdam log Dy, () + EZNp(z) log(1 — D, (Geg (z)))} better loss landscapes
d

helps training, is an active
area of research.

2. Instead: Gradient ascent on generator, different objective
mgax ]Ezmp(z) log(ng (G@g (Z)))

g

_ log(l—DlG[:)))i
—  —logD(G(z))

/
Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

-3}

L
0.0 0.2

Low gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game
lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

!

Discriminator Network

Fake Images - Real Images
(from generator) | | - - (from training set)
| 1

Generator Network

A

ﬂ Random noise yA

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



GANS

« Demo
— https://poloclub.github.io/ganlab/



https://poloclub.github.io/ganlab/

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

—

-

S

Stride 2

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,

ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Generativ% Adversarial Nets: Convolutional Architectureg
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096



(a) 128 % 128  (b) 256x256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096



R
an

S

\o‘d
.

s,\.

7

P R
- N

37

https://gist.github.com/phillipi/d2921f2d4726d7e3cdac7a4780c6050a
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Explosion of GANs

“The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling ¢ CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models ¢ DTN - Unsupervised Cross-Domain Image Generation
DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution g fseov : : : : I

. . . DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
¢ AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
¢ ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

¢ AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

+ ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw

« b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks GeneGAltl - GeneGAN: Lea.rning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

* Bayesian GAN - Deep and Hierarchical Implicit Models GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

* BiGAN - Adversarial Feature Learning IAN - Neural Photo Editing with Introspective Adversarial Networks

« BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. . . . . . . . + ID-CGAN - | De-raining Usi Conditional G tive Ad ial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters mage be-raining Lsing a tonditional benerative Adversarial Retwor

. . . * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks P P . ¢

. . . . . . . InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
¢ CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

* CoGAN - Coupled Generative Adversarial Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



GANSs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:

- Beautiful, state-of-the=art samples!

Cons; /
- @(ier/ more unstable to train V/

- Can’t solve inference_queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANSs for all kinds of applications

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

« Generative Adversarial Networks (GANS)

« Closing the loop
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So what is Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

r
* |[End-to-End Learning

— Learning (goal,—%en)representations
| — Learning to feature extraction

Distributed Representations
— No single neuron “encodes” everything
— Groups of neurons work together

(C) Dhruv Batra 42



Building A Complicated Function

Given a library of simple functions

ldea 2: Compositions
Compose into a

' Y

complicate function
« Scattering transforms...

 Deep Learning

e Grammar models

f(x) = g1(g2(- - (gn(x)...))

— (—| | | | —| — | —|
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Differentiable Computation Graph

Any DAG of differentialble modules is
allowed!
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So what is Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality
— Cascade of non-linear transformations

— Multiple layers of representations

End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

Distributed Representations
— No single neuron “encodes” everything
— Groups of neurons work together
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“Shallow” vs Deep Learning

« “Shallow” models

hand-crafted “Simple” Trainable

Feature Extractor Classifier
\///mmﬂ learned
- ~
—
 Deep models

Trainable Trainable Trainable

Feature- Feature- Feature- .
Transform / I e Transform / T Transform /

Classifier Classifier Classifier

Learned Internal Representations
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Key Computation: Forward-Prop
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Key Computation: Back-Prop
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So what is Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

Distributed Representations
— No single neuron “encodes” everything
— Groups of neurons work together
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-
Distributed Representations Toy Example

- Can we interpret each dimension? - —

(a) (b)

wpen QOO QO  mmen OO QO
0300 [ [@ce0|
—1 0@00 C®®O
) ooeo () ecoe
— 000@® < Oeoe
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Power of distributed representations!

Local “O‘:VR+HR+HE=?
Distributed “O.=V+H+E:::Q
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[
What is this class about?
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[
What is this class about?

* Introduction to Deep Learning

 Goal:

— After finishing this class, you should be ready to get started
on your first DL research project. o
* CNNs
* RNNs
. @ Reinforcement Learning
« Generative Models (VAEs, GANSs)

 Target Audience:
— Senior undergrads, MS-ML, and new PhD students
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[
What did we learn?

« Background & Basics
» Neural Networks, Backprop, Optimization (SGD)

« Module 1: Convolutional Neural Networks (CNNs)
* Architectures, Pre-training, Fine-tuning
» Visualizations, Fooling CNSS, Adversarial examples
» Different tasks: detection CNNs, segmentation CNNs

* Module 2: Recurrent Neural Networks (RNNs)

 Difficulty of learning; “Vanilla” RNNs, LSTMs, GRU

» RNNs for Sequence-to-Sequence (machine translation & image captioning, VQA,
Visual Dialog)

« Module 3: Deep Reinforcement Learning

» Overview, policy gradients
» Optimizing Neural Sequence Models for goal-driven rewards

-

 Module 4: Deep Unsupervised Learning

« Variational Inference
» Variational Auto Encoders (VAESs)
* GANSs, Adversarial Learning J
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Arxiv Fire Hose

PhD Student

Deep
Learning
papers

ST, A
ge8]9 Cornell University
¥ §

arXiv.org
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Feedback

http://b.gatech.edu/cios


http://b.gatech.edu/cios

Thanks!

(We hope your future learnings are deep)
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