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Jnder the paradigm of supervised learning.
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What if you don't have a large dataset?

medical imaging robotics personalized education

translation for rare languages recommendations

What if you want a general-purpose Al system in the real world?

» Need to continuously adapt and learn on the job.

» Learning each thing from scratch won't cut it.

What if your data has a long tail?

big data

/
/

Impractical to collect lots of data for each task,
and learn specialized networks for each task

3

# of datapoints
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Humans are generalists




training data test datapoint

- - ' NECAY | By Braque or Cezanne?
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What if you need to quickly learn something new?

about a new person, for a new task, about a new environment, etc.

How did you accomplish this?

by leveraging prior experience!

Slide Credit: ICML 2019 Meta-Learning Tutorial 6



Whny now?

Why should we study deep multi-task & meta-learning now?

Slide Credit: CS 330: Deep Multi-Task and Meta Learning



Multitask Learning”

RICIT CATTITUANA

Multitask Learning (MTL) i1s an inductive transfer mechanism whose principle goal is
to improve generalization performance. MTL improves generalization by leveraging the
domain-specific information contained in the training signals of related tasks. It does this by
training lasks in parallel while using a shared representation. In effect, the training signals
for the extra tasks serve as an inductive bias. Section 1.2 argues that inductive transler 1s
: . : . S Rule
important if we wish to scale tabula rasa learning to complex, real-world tasks. Section 1.3
presents the simplest method we know for doing multitask inductive transtfer, adding extra

On the Optimization of a Synaptic Learning

tasks (1.e., extra outputs) to a backpropagation net. Because the MTL net uses a shared Samy Bengio  Yoshua Bengio  Jocelyn Cloutier  Jan Gecsei
hidden layer trained in parallel on all the tasks, what is learned for each task can help other
tasks be learned better. Section 1.4 argues that it is reasonable to view training signals as Université de Montréal, Département IRO

an inductive bias when they are used this way.

Carua Na I 997 'his paper presents a new approach to neural modeling based on the idea of using
I/
an automated method to optimize the parameters of a synaptic learning rule. The

synaptic modilication rule is considered as a parametric funclion, This function has

local inputs and 12 the same in many neurons. We can use standard optimization

Is Learning The n-th Thing Any Easier Than
Leaming The First? methods to select appropriate parameters for a given type of task. We also present a

theoretical analysis permitting fo study the generalization property of such parametrie
Sebastian Thrun! learning rules. Dy generalization, we mean the possibility for the learning rule to

; . ¢ ICEII‘I] to .‘30] Y¢c ncuw ta‘sks. EI')CI'iITlC]'lTJE WwWCrc )CI‘fC'I‘lll C(l o1 thI‘CC t-\,")CS Df )I'OblClllEv: il
They are often able to generalize correctly even from a single training example [2, 10]. One . 1 Y1 I

of the key aspects of the learning problem faced by humans, which differs from the vast

majority of problems studied in the field of neural network learning, is the fact that humans B eng ioetal 1992
encounter a whole stream of learning problems over their entire lifetime. When faced with '

a new thing to learn, humans can usually exploit an enormous amount of training data and

experiences that stem from other, related learning tasks. For example, when learning todrive
a car, years of learning experience with basic motor skills, typical traffic patterns, logical
reasoning, language and much more precede and influence this learning task. The transfer of
knowledge across learning tasks seems to play an essential role for generalizing accurately,
particularly when training data is scarce.

| | | Thrun, 1998 g
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These algorithms are continuing to play a
fundamental role in machine learning research.

Multilingual machine translation Multi-domain learning for sim2real transfer
Massively Multilingual Neural Machine Translation CADZRL Sadegh| & LeV|ne 201 6
Bar lan Univensiy N Congde Al One-shot imitation learning o TSR a : |
Ramat-Gan Mountain View e
srael | California from humans
roee.aharoni@gmail.com melvinp,orhanf@google.com
while supporting up to 59 languages. Our DAL Yu et a' RSS 2018

experiments on a large-scale dataset with
102 languages to and from English and up to
one million examples per direction also show
promising results, surpassing strong bilingual
baselines and encouraging future work on

massively multilingual NMT.

2019

YouTube recommendations

Recommending What Video to Watch Next: A Multitask
Ranking System

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Anirudch Nath, Shawn Andrews, Aditee Kumthekar,
Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi
Coogle. Inc.
[zhezhao, lichan liwel,jiline, aniruddhnath, shawnandrews,aditeck,nlogn, xinyang, cdchi)@googlc.com

In this paper, we introduce a large scale multi-objective ranking
system for recommending what video to watch next on an indus-
trial video sharing platform. The system faces many real-world
challenges, including the presence of multiple competing ranking
objectives, as well as implicit selection biases in user feedback. To

2019
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These algorithms are playing a fundamental, and
increasing role in machine learning research.

Interest level via search queries

® meta-learning ® multi-task learning

How transferable are features in  Learning to learn by gradient Model-agnostic meta-learning for ~ An overview of multi-task

a deep neural network? descent by gradient descent fast adaptation of deep networks  learning in neural networks
Yosinski et al."15 Andrychowicz et al."15 Finnetal."17 Ruder’17
I 1046 216 447 191
- = B - I I
2015 2016 2017 2018 2C 2015 2016 2017 2018 2017 2018 2019 2017 2018 2018
10 Graph sources: Google scholar, Google trends
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What if you don't have a large dataset?

medical imaging robotics personalized education

translation for rare languages recommendations

What if you want a general-purpose Al system in the real world?

» Need to continuously adapt and learn on the job.

» Learning each thing from scratch won't cut it.

What if your data has a long tail?

big data

/
/

~ objects encountered
interactions with people
words heard

driving scenarios

# of datapoints

Slide Credit: CS 330: Deep Multi-Task and Meta Learning !



What is a task?

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 12



What is a task?

dataset D
loss function L

For now: — model Jo

Different tasks can vary based on:

different objects

different people

different objectives

different lighting conditions Not just different “tasks”
different words

different languages

Slide Credit: CS 330: Deep.Multi—Task and Meta Learning 13



Critical Assumption

The bad news: Different tasks need to share some structure.
't this doesn’t hold, you are better off using single-task learning.

The good news: There are many tasks with shared structure!

- The laws of physics underly real data.
| - People are all organisms with intentions.
seemingly unrelatea: - The rules of English underly English language data.

- Languages all develop for similar purposes.

Even if the tasks are

This leads to far greater structure than random tasks.

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 14



Some notation

7/ >SS I

7X7 conv '\?4 flters "\ 32 filters LN e - fully fully fully Q§ ;8, =
o i ey 2 oS
| S
e Clsilcion i Dy Comoltn length of paper
Jo(y [ X)
Single-task learning: 9@ = {(x, Y.} What is a task? (more formally this time)
[supervised] min 0. O .
in 216, 2) Atask: T2 {p),p(y 1%, L))

. . St data generating distributions
Typical loss: negative log likelihood

Z0,D) = — -(xy)N@[logfg(y | X)] Corresponding datasets: @5’” 95‘3“

will use 9, as shorthand for D"

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 1o



Informal Problem Definitions

The multi-task learning problem: Learn all of the tasks more quickly or more
proficiently than learning them independently.

The meta-learning problem: Given data/experience on previous tasks, learn a
new task more quickly and/or more proficiently.

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 16



Meta-Learning Basics

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 1



General Recipe: How to train/evaluate meta-learning algorithms
Training task 1 Training task2 - - - Test task1 - - -

Support set Support set Support set - Held out classes

18



General Recipe: How to train/evaluate meta-learning algorithms

the Omniglot dataset Lake et al. Science 2015
1623 characters from 50 different alphabets

Hebrew i__jBengali _ Greek Futurama many C|aSSES, few examples
W|02|T 0| MFARTR (| LIBIRIL] 2]2]S ]2 IX|®
b X VAN ShrEaatss (MR V i’l;{j? Qgg the “transpose” of MNIST
IR ﬂ‘ﬁgg’ﬂ;? VI6|Y|T|a MRBCOEE o .
NEDEESE AR alxM[ole] Ew statistics more reflective
1|0 LI P1EIT Y of the real world

20 instances of each character

Proposes both few-shot discriminative & few-shot generative problems

Initial few-shot learning approaches w/ Bayesian models, non-parametrics
Fei-Fei et al. ‘03 Lake et al. ‘11 Salakhutdinov et al. ‘12 Lake et al. ‘13

Other datasets used for few-shot image recognition: Minilmagenet, CIFAR, CUB, CelebA, others

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 19



Two ways to view meta-learning algorithms

Mechanistic view

> Deep neural network model that can read in
an entire dataset and make predictions for
new datapoints

> Training this network uses a meta-dataset,
which itself consists of many datasets, each
for a different task

> This view makes it easier to implement meta-
learning algorithms

Slide Credit: ICML 2019 Meta-Learning Tutorial 20



Problem definitions

supervised learning:

- W mp—— _— | .
c’-“’@:”;’,cf“‘;} . &Ig Illgx lug p(Q)|D) D o {(xlj yl ')’ S (a/k’ yk)}
" ~;:\.;_,_?";",. : L \\‘\,\ _
‘,‘\fj; :E:;/;?ifj / \ /
Sy model parameters training data input (e.g., image) label
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Problem definitions

supervised learning:

arg mgxlogp(cf)\D) D={(x1,91),- - (T, yx)}

Slide Credit: ICML 2019 Meta-Learning Tutorial



The meta-learning problem

D= {(z1,y1),-- -, (@0, yx)}

Dmeta-train — {Dla IR 7Dn}

meta-learning:

arg mgx log p(q‘)\D, Dmeta—train) | , . :
D'i, — {(leayi)a i® W (I?ka ?/fc)}

what if we don’t want to keep Dieta-train around forever?

+hie +lhAn A

P ~n P
CIT1O 1o LIIT 111CT I

+ ~hlA
L OIEeMm

rning pro

-~
a~

9* = arg max 10g p(6|Dmeta-train) ~ arg max log p(¢|D, 6™)

Slide Credit: ICML 2019 Meta-Learning Tutorial 23



Meta Learning Algorithnms Taxonomy

Model Based

Santoroetal. 16
Duanetal. "1/
Wang et al. ‘17
Munkhdalai & Yu ‘17
Mishra et al. ‘17

Slide Credit: Oriol Vinyals, Meta Learning Symposium (NIPS 2017)

Metric Based

Koch '15
Vinyals et al. “16
Snell et al. 17
Shyam et al. “17
Sung et al. 17

24

Optimization Based

DI(rngin

Schmidhuber '87, '92
Bengio et al. '90, ‘92
Hochreiter et al. '01

Li & Malik “16
Andrychowicz et al. '16
Ravi & Larochelle ‘17
Finnetal 17



Meta Learning Algorithnms Taxonomy

Model Based

Santoroetal. 16
Duanetal. "1/
Wang et al. ‘17
Munkhdalai & Yu ‘17
Mishra et al. ‘17

Slide Credit: Oriol Vinyals, Meta Learning Symposium (NIPS 2077) 25



A Quick Example

test input

Slide Credit: ICML 2019 Meta-Learning Tutorial 26



How do we train this thing?

D — {(xl’yl), S & a3 (xkza yk)}

Dmeta—train — {Dla R aDn}

: S * 2 2 2 )
adaptation: ¢* = arg mgx log p(o|D, 0™) D, ={(z%,y!),...,(z%,yL)}
F ﬁ yA « test label D
o ‘
‘ | D,
(xlayl) (x27y2) (x3ay3) xts \ Dlneta-train
J
' test input D
D
Key idea:

“our training procedure is based on a simple machine learning principle: test and train conditions must match”
Vinyals et al., Matching Networks for One-Shot Learning

Slide Credit: ICML 2019 Meta-Learning Tutorial 2/



Reserve a test set for each task!

Dmet a-train

(meta) training-time

Dmeta—train — {(Dtra ng)a oL (Dtr qu)}

A A A

D = {(21,91)s - (@h Yi)}

(1, 91) (25, v5) (x5, y5) '
L S ‘ ,
D = {(z1,91)- -, (x1,¥)} '
Di (th’ytS) ~ DZ%
Key idea:

“our training procedure is based on a simple machine learning principle: test and train conditions must match”
Vinyals et al., Matching Networks for One-Shot Learning

Slide Credit: ICML 2019 Meta-Learning Tutorial 28



How to perform meta-training - data loader

learn 6 such that ¢; = fo(D!") is good for DI* Dmeta-train = { (DT, D), ..., (DT, D)}
- [t i A
0" = a | ; Dt Dz — {(mlayl)w"?(ajkvyk)}
Arg max ;:1: og p(¢i|D;”) T -
D = {(2%,4%),. .., (z}, y!

(i.e., k-shot, 5-shot)

training data testset (meta-training) task 7.
— .

Dmet a~traln

meta-training

Do

meta-testing A e H l \(meta-test) task

support (set) \

image credit: Ravi & Larochelle ‘17
Slide Credit: ICML 2019 Meta-Learning Tutorial 29



How to perform meta-training

Train a neural network to represent p(¢;|D;", 0)

fi "
T
T T T T
($17y1) ($27y2) ($3,y3) a;.tS
| —
D:Er D:Eest

Slide Credit: ICML 2019 Meta-Learning Tutorial



Key idea: Train a neural network to represent p(¢;|D;", 0)

T

fo

T

— ¢

T

(z1,91) (22,92) (z3,ys3)

v
DY

Slide Credit: ICML 2019 Meta-Learning Tutorial

yts

T

Yo

|

X

ts

1. Sample task 7T; (or mini batch of tasks)
2. Sample disjoint datasets D}, D;**" from D;




Black-Box Adaptation

Key idea: Train a neural network to represent p(¢;|D;", 0)

fo

— ¢

o T

(z1,91) (22,92) (x3,ys3)

Slide Credit: ICML 2019 Meta-Learning Tutorial

yts

T

Yo

|

ts

X

1. Sample task 7; (or mini batch of tasks)
2. Sample disjoint datasets D;", D;*** from D;

3. Compute ¢; f@(Dgr)
4. Update 6 using Vg L(¢;, DfeSt)




Meta Learning Algorithnms Taxonomy

Metric Based

Koch '15
Vinyals et al. “16
Snell et al. 17
Shyam et al. “17
Sung et al. 17

Slide Credit: Oriol Vinyals, Meta Learning Symposium (NIPS 2077) 33



Non-Parametric (Metric-Based) Models

In low data regimes, non-parametric RO I '{
methods are simple, work well. -'

During meta-test time: few-shot learning <-> low data regime

Slide Credit: CS 330: Deep Multi-Task and Meta Learning >



Non-parametric methods

Key Idea: Use non-parametric learner.

training data Df;r test datapoint h

Compare test image with training images

In what space do you compare? With what distance metric?

pixel space, |, distance?

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 39



Non-parametric methods

Key Idea: Use non-parametric learner.

training data Dgr test datapoint 4

Compare test image with training images
In what space do you compare? With what distance metric?
pixel space, |- distance?
Learn to compare using meta-training data!

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 36



Non-Parametric (Metric-Based) Models

In low data regimes, non-parametric |
' T

During meta-test time: few-shot learning <-> low data regime

During meta-training: still want to be parametric

Can we use parametric meta-learners that produce effective non-parametric learners?

Note: some of these methods precede parametric approaches

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 3/



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Koch et al., ICML ‘15

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 38



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Koch et al., ICML ‘15

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 5



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Koch et al., ICML ‘15

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 40



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

"1.1

- o ha N, training data D'* test datapoint T"°
\ T2 s | \
Meta-test time: compare image Xtest to each image in D;-r % w

Meta-training: Binary classification
Meta-test: N-way classification

Can we match meta-train & meta-test?

Koch et al., ICML ‘15

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 4



Non-parametric methods

Key Idea: Use non-parametric learner.
Can we match meta-train & meta-test?
Nearest neighbors in learned embedding space

bidirectional fo(z"™, xx

s \ /

'Yy

Z f@(iUtSaCl?k)yk

Tk, Yk €D

convolutional
encoder

Trained end-to-end.
Meta-train & meta-test time match.

Vinyals et al. Matching Networks, NeurlIPS ‘16

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 42



Non-parametric methods

Key Idea: Use non-parametric learner.

General Algorithm:

-Ameortizedapproach- Non-parametric approach (matching networks)
1. Sample task 7;  (or mini batch of tasks)

2. Sample disjoint datasets D;*, D;**" from D;
(Parameters @ integrated

t ~tS — ts
3. Gﬁﬁﬂ'piﬁe-é—ﬁ%'@ﬁ'z 7;r Compute ¥ Z fo (@™, Tk )Yk out, hence non-parametric)

Tk ,Yr €D

4. Ypdate-G-using-Vo£(d P> Update  using VoL(§%,y")

Matching networks will perform comparisons independently

What if >1 shot? , , , ,
Can we aggregate class information to create a prototypical embedding?

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 4



Non-parametric methods

Key Idea: Use non-parametric learner.

Cn = 7 Z 1(y =n)fo(x)
(z,y) €D}’
B - exp(—d(fe(x),cn))
po(y = n|z) = S exp(d(fo(z), cnr))

o C3

(a) Few-shot

d: Euclidean, or cosine distance

Snell et al. Prototypical Networks, NeurlPS ‘17

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 44



Meta Learning Algorithnms Taxonomy

Slide Credit: Oriol Vinyals, Meta Learning Symposium (NIPS 2017)
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Optimization Based

Dt(pa)in

(X3,Y3)

Schmidhuber '87, '92
Bengio et al. '90, ‘92
Hochreiter et al. '01

Li & Malik “16
Andrychowicz et al. '16
Ravi & Larochelle ‘17
Finnetal 17



Optimization-Based Inference
Key idea: Acquire ¢; through optimization.

max log p(D;"|¢:) + log p(¢:]6)

Meta-parameters @ serve as a prior.  What form of prior?

One successful form of prior knowledge: initialization for fine-tuning

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 46



Optimization-Based Inference

/pre—trained parameters
Fine-tuning ¢ — 0 — OéV@L:(Q, DY

) training data

| | for new task
(typically for many gradient steps)

Slide Credit: CS 330: Deep Multi-Task and Meta Learning 4/



Optimization-Based Inference

/pre—trained parameters
Fine-tuning ¢ — G — OéV@[:((g, Dtr)

. training data
[test-time]

for new task

Meta-learning mHiIl Z £(9 — Oéveﬁ(ey Dl}r)a DES)
task 7

Key idea: Over many tasks, learn parameter vector 0 that transfers via fine-tuning

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017
Slide Credit: CS 330: Deep Multi-Task and Meta Learning
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Optimization-Based Inference
: o 1;r ‘ps
min Z L0 —aVeL(0,D;"),D;)

task 17 |
— Mmeta-learning

9 parameter vector 9 ---- learning/adaptation

being meta-learned

¢>l< optimal parameter
1 vector for task i VL,

v

Model-Agnostic Meta-Learning

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017
Slide Credit: CS 330: Deep Multi-Task and Meta Learning
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Optimization-Based Inference

Key idea: Acquire ¢; through optimization.
General Algorithm:

-Arertzedappreach- Optimization-based approach

1. Sample task 7;  (or mini batch of tasks)
2. Sample disjoint datasets D;*, D;**" from D;

3. Cempute-d~—F(P7)r Optimize ¢; + 0 — aVeL(0, Di)
4. Update 0 using VgL (¢;, D;")

—> brings up second-order derivatives

Slide Credit: CS 330: Deep Multi-Task and Meta Learning >



Optimization-Based Inference

Key idea: Acquire ¢; through optimization.

Challenges

Backpropagating through many inner gradient steps is compute- & memory-
Intensive.

ao; as identity

o (Finn et al. first-order MAML ‘17, Nichol et al. Reptile "18)
Takeaway: works for simple few-shot problems, but (anecdotally) not

for more complex meta-learning problems.

Idea: [Crudely] approximate

Slide Credit: CS 330: Deep Multi-Task and Meta Learning >



Optimization-Based Inference

Key idea: Acquire ¢; through optimization.

Takeaways: Construct bi-level optimization problem.

+ positive inductive bias at the start of meta-learning

+ consistent procedure, tends to extrapolate better

+ maximally expressive with sufficiently deep network

+ model-agnostic (easy to combine with your favorite
architecture)

- typically requires second-order optimization

- usually compute and/or memory intensive

Slide Credit: CS 330: Deep Multi-Task and Meta Learning >



Design of f? —

Recurrent network MAML

network implements the
“learned learning procedure”

Does it converge? Does it converge?
- Sort of? - Yes (it's gradient descent...)
What does it converge to? What does it converge to?
- Who knows... - Alocal optimum (it's gradient descent...)
What to do if not good enough? What to do if not good enough?
- Nothing - Keep taking gradient steps (it's gradient descent..)

Slide Credit.Chelsea Finn & Sergey Levine 53



Meta learning algorithnms taxonomy

Computation graph perspective

Black-box amortized Optimization-based Non-parametric
yts _ f@ <]>;;:r7 a,/,tS) yts _ fMAML (D;pr’ xtS) yts _ fPN (D::;r’ CE,’LS)
?{S — fcbz' (xts) = softmax (Id(fH (56)7 Ck))
T T where ¢; = 0 — aVyL(0,D;")  where ¢, = d > fol2)
(z1,y1) (2,92) (23,Y3) " v (ZU,y)ED;?r

54



Black-box vs. Optimization vs. Non-Parametric

Black-box amortized

+ easy to combine with variety of
learning problems (e.g. SL, RL)

- challenging optimization (no
inductive bias at the initialization)
- often data-inefficient

- model & architecture
intertwined

Optimization-based

+ handles varying & large K well
+ structure lends well to out-of-

distribution tasks

- second-order optimization

Non-parametric

+ simple

+ entirely feedforward

+ computationally fast & easy to
optimize

- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Generally, well-tuned versions of each perform comparably on existing few-shot benchmarks!

Slide Credit: CS 330: Deep Multi-Task and Meta Learning
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