CS 4803/ 7643: Deep Learning

Topics:
£— Variational Auto-Encoders (VAESJ
— AEs, Variational Inference

Dhruv Batra
Georgia Tech



[
Administrativia

« HW4 Reminder
— Due: 11/07, 11:55pm
— Reinforcement Learning

— Last HW. Focus on project after that.
o

* Final project
— No poster sessiorJ
—[-PDF Report submission

» QDetails out soon
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[
Administrativia

« HW3 Grades Released

— Regrade requests close: 11/15, 11:55pm

— Please check solutions first!
-

e Grade histogram: 7643

— Max possible: 71 (regular credit) + O (extra credit)

T I
10 20 30 40 50 60

/TN
N

28.0 /;3.0 ) 71.0 65.51 7.52
T~—
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Administrativia

« HW3 Grades Released

— Regrade requests close: 11/15, 11:55pm
— Please check solutions first!

« Grade histogram: 4803

— Max possible: 55 (regular) + 14 (extra credit)
~ —

0 5 10 15 20 25 30 35 40

40.0 62.0 19 61.97 6.77
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Recap from lasttime 2 lectures ago

(C) Dhruv Batra 3



N
Superwsed vs Reinforcement vs Unsupervised

Learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised
Learning :

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a functionto map x 2 vy

Examples: Classification,
regression, object detection, Classification
semantic segmentation, image
captioning, etc.

Thisi s CCO 4 )

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Reinforcement
Learning
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Reinforcement Learning " BN
« [@TOTOT LTS
Given: (e, r) 15 £ ©
Environment e, Reward functionr 11 ®
(evaluative feedback) AP .&}
T 10
Goal: Maximize expected reward 8
SNS——— 7
Examples: Robotic control, video . ?@%8%
games, board games, etc. X 0@ by

A BCDETFGH )] KLMNUOPO QRS ST

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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I
Unsupervised

Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden struct f the data

Examples: Clustering,
dimensionality reduction,

feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Unsupervised
Learning
Unsupervised Learning Supervised Learning
Data: x = > Data: (x, y)
Just data, no labels! X is data, y is label
Goal: Learn some underlying Goal: Learn a functionto map x 2> y

hidden structure of the data

Examples: Clustering, Examples: Classification,
dimensionality reduction, regression, object detection,
feature learning, density semantic segmentation, image
estimation, etc. captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Unsupervised
Learning
p(?& P( % ()
Unsupervised Learning Supervised Learning
___Training data is cheap
(Data: X \ Holy grail: Solve Data: (x, y)

unsupervised learning y i data y is label
=> understand structure ’

of visual world _
Goal: Learn some underlying Goal: Learn a functionto map x 2> y

hidden structure of the data

Just data, no labels!

Examples: Clustering, Examples: Classification,
dimensionality reduction, regression, object detection,
feature learning, density semantic segmentation, image
estimation, etc. captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Tasks

Supervised Learning

X > Classification
~———
X > Regression

Unsupervised Learning

X > Clustering

\f

> Dimensionality
-Reduction

(>

X N Density

Estimation
\_\_——
(C) Dhruv Batra

> Yy Discrete

> y Continuous
~ ~ -

> Cc Discrete

> VA Continuous

> ‘@ On simplex
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I
Unsupervised

Learning

Pa
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, K-means clustering
feature learning, density
estimation, etc.

Thisi o 4 )

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

_ — Auton’s Graphics i _JI
K-means |-

1. Ask user how many | os T
clusters they'd like.
(e.qg. k=5)

2. Randomly guess k

0,6 T
cluster Center
locations
3. Each datapoint finds
0.4 T "5

out which Center it's
closest to.

4. Each Center finds
the centroid of the | ».2 T
points it owns...

——
——
—4
——
—4
——

S. ...and jumps there | " 0.2 0.4 0.6 0.8 1

x0 7

6. ...Repeat until
(c) bhruv d@rminated! Slide Credit: Carlos Guestrin 15



-
K-means as Co-ordinate Descent In
X2 =7

Q’i{’jla

vE )
min  min F(p,a)= min  min ZZCLwHXz I

M1, Hi Q1,..., an M1y, Hne ai,..., an “ . S |

« Optimize objective function:

* Fix u, optimize a
* Fix a, optimize pn

(C) Dhruv Batra Slide Credit: Carlos Guestrin 16



Unsupervised
Learning

Unsupervised Learning

original data space

component space

Data: x Pea
Just data, no labels! e =
Goal: Learn some underlying N
hidden structure of the data
—> 2-d
Examples: Clustering,
dimensionality reduction, Principal Component Analysis
feature learning, density (Dimensionality reduction)
estimation, etc. e e

cCo X )

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised
ning
Pl
Unsupervised Learning | —

Data: x e A

Just data, no labels!

1-d density estimation

Goal: Learn some underlying )
hidden structure of the data L

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc. o

2-d density estimation

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Generative Models

Given training data, generate new samples from same distribution

A 5’4

Training data ~ pyata(X) Generated samplesl ~ pmode,(x)?
Want to Iearn’pmodd(x)!similar t

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Models

Given training data, generate new samples from same distribution

-
Training data ~ pyata(X) Generated samples ~ Progel(X)

Want to learn pp,oqe(X) similar to pyaia(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors: P C’)/J

- @(_@_@Ld_@ggity estimation: explicitly define and soIveA:r Prmo

- Implicit density estimation: learn mjgzl;l that can /sample from Prmodel

B NS

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(x)|w/o explicitly defining it




Flgures

from

L-R are

Why Generative Models?

Realistic samples for artwork, super-resolution, colorization, etc.

Generatlve models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

Training generative models can also enable inference of latent
representations that can be useful as general features

copyright: (1) Alec Radford et al, 2016; (2) David Berthelot et al, 2017; Phillip Isola et al, 2017. Reproduced with authors permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/

e
Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
. : GSN
Fully Visible Belief Nets \

- NADE : / :

- MADE Variational Markov Chain

- PixelRNN/CNN

) Variational Autoencoder Boltzmann Machine
Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Taxonomy of Generative Models

Direct
We will discuss 3 most ) GAN
popular types of generative \Generative models
models

Implicit density /

Explicit density

/\

Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ GSN
- NADE —= :
- MADE Variational Markov Chain
- | PixeIRNN/GNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA) L/\[‘\—-/
Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Observab\le_ Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d M

distributions: ({
n
Y e >
iZlL\_T- — l2 |

Likelihood of Probability of i'th pixel value
image x given all previous pixels
Then maximize likelihood of training data
5@ 5
b
K- (Mw-e |
.-
_—— /

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



S
Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(:}:) = Hp(:vz-|a:1, ...,:E,,;_l)
T i=1 T

Likelihood of Probability of i'th pixel value
image x given all previous pixels

Complex distribution over pixel values
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

Goal: Variational Autoencoders

\

[Latent variable probabilistic models
— Example GMMs

Autoen@deders
Variational Inference

(C) Dhruv Batra 26



Variational
Autoencoders (VAE)



So far...

PixelCNNs defme tractable density function, optimize |Ike|lh00d of training data:

@ = gpe (zi|z1, ..., Ti—1) ( )(, D O["‘> }

(% @ “ﬂ@w
(D(DC 2@

A
(on &ﬂt‘ /)M/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

p@(m) = Hp9($7;|:131, . IEz'_l)
=1

VAEs define intractable density function with latent z:

\—\@= f po(2)po(z]2)dz > (pbimugw
“ ouds,
5 9[2 ) i)z) 2 (ke
2 f—"‘(f(/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

PixelCNNs defme tractable density function, optimize likelihood of training data:

— Hpe(wz'lcvl, ey Ti—1) ? / L\LJ&M'
mw

VAEs define intg;;[able density function with latent z:

po(z) =

Z

Cannot optimize-directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

6(2)po(|2)dz L\j



hT) MUy = ¢ 0
(C) Dhruv Batra AM | = Figure Credit: Kevin Murphy 31



Gaussian Mixture Model
? Z Gk () [* zetl: -4
—_— 1
X = P(Z«Q

@ )
/2//{_] N[ e > @f/
(o f) [0
L /\(

Tt

(,AQ

/
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Gau53|an Mixture Model

” p@ 4 /ﬂm

e

12 )
Pal2) = N(k.& %

I S
/ (%) = )Z O] 1012 = Morgialte

N g2 (L) V@ oo
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(C) Dhruv Batra Figure Credit: Kevin Murphy 35



K-means vs GMM

« K-Means

— http://stanford.edu/class/ee103/visualizations/kmeans/kmean
s.html

« GMM

— https://lukapopijac.github.io/gaussian-mixture-model/

(C) Dhruv Batra 36


http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
https://lukapopijac.github.io/gaussian-mixture-model/

e
Hidden Data Causes Problems #1

* Fully Observed (Log) Likelihood factorizes

'WLOQ) Likelihood doesn’t factorize

—

« All parameters coupled!

(C) Dhruv Batra 37






Hidden Data Causes Problg%s #H2

[

145

55F
,(gg

-16.51

(C) Dhruv Batra Figure Credit: Kevin Murphy 39



Hidden Data Causes Problems #3

- Likelihood has singularities if one Gaussian

“collapses”
N
\{V’QM M{;ll
610 12
\% I h { 24,2
%/Q/ e @i} i> 246750
£3
[57} _ QU 3, &)

(C) Dhruv Batra A X
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-
Variational Auto Encoders

VAEs are a combination of the following ideas: P [')’(’D

1. Auto Encoders (7[Z>
7 FV s

E. Variational Approximation
« Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. "Reparameterization” Trick

(C) Dhruv Batra 42



Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data T —

- k
Features ;j £ [K
T Encoder &
Input data T ya }R

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Features 2 uﬁﬁ]\ u

T Encoder ?- E@

Input data QSQW
: sl <

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

.z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)
Later: Deep, fully-connected
Q: Why dimensionality Later: ReLU CNN
reduction?
Features e i . N

R P
sl < S

yA
T Encoder "{Eﬂﬁ )
h

Input data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected
Q: Why dimensionality Later: ReLU CNN
reduction?

A: Want features to

LY ] | = ' 7-\’
capture meaningful Features maﬁé

Z
factors of variation in "ﬂ' '
data T Encoder o Aﬁ .
£I

R P
sl < S

Input data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Autoencoders

How to learn this feature representation?

Features

YA
T Encoder
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed lf: } 2
input data 1
@“
l<
_ Features | 2 — ”2‘ —
/ Encoder
Input data T I\‘{

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

econstructed data ]
=
How to learn this feature representation? 3 ‘ n@
Train such that features can be used to reconstruct original data '
"
“Autoencoding” - encoding itself ns'z‘

-H: LT

Re_constructed QAJ‘ Encoder: 4-layer conv J

input data DecoderA_layer upconv

T Decoder
data

Features ; E .7

Encoder ' 4‘ ﬁﬁ

| T RhisS R
nput data T -H <€ .E |
f A

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

Train such that features

can be used to L2 Loss function:
reconstruct original data H.@.‘ 212 <
Reconstructed

T
input data )\ T
Featu z

X

Input data

A

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reconstructed data

e = T (S
P L.&s

RS AE
-H: LT

Encoder: 4-layer conv
Decoder: 4- Iayer upconv

ut data
P b o DI
ll. ¥ v

o el b ] M
sl <« B




N
Autoencoders

Reconstructed data

e i =

Train such that features ~ Doesn't use labels! ,'g‘ n@
b dt L2 Loss function:

?:cr:]onztlrjusci orci)ginal data ||a: _ :;;||2 < nsqn
T i < s

, e

Re_constructed 53 Encoder: 4-layer conv
input data Decoder: 4-layer upconv
T Decoder A

ety
Features PA mﬁ ; }-.
/ T E\nxeder ’Ei @
. o et b 5 M

Input data / T

sl <« B

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N
Autoencoders

 Demo

— https://cs.stanford.edu/people/karpathy/convnetjs/demo/auto
encoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Autoencoders

Reconstructed 4
input data -
— ‘ Decoder
Features 2 \ After training,
] e th&w away decoder
T Encoder —
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Autoencoders

Predicted Label

Encoder can be

used to initialize a Features

supervised model

Input data

Loss function
(Softmax, etc)

N

Y y
T lassifier
> \
Encoder
‘ \

|

D=

bird plane
dog deer truck

Fine-tune Train for final task

encoder (sometimes with
jointly with small data)
classifier

el o R

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



q

(0 Autoencoders (1)

L @)

d 15\/ \ 4 Autoencoders can reconstruct

data, and can learn features to
initialize a supervised model

Reconstructed 7 Features capture factors of
input data variation in training data. Can we
Decoder generate new images from an
autoencoder?

Features |z

]

Encoder

Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Variational Autoencoders

\_/i

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

o(219)

Encoder q4(z1x)

Data: x Reconstruction: X P(% l L>

N

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



Variational Auto Encoders

VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
« Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. "Reparameterization” Trick

(C) Dhruv Batra 58



Key problem (2

(C) Dhruv Batra 29



[
What is Variational Inference??

* A class of methods for
— approximate inference, parameter learning
— and approximating integrals basically..

 Key idea
— Reality is complex

— Instead of performing approximate computation in something
complex,

— Can we perform exact computation in something “simple™?

— Just need to make sure the simple thing is “close” to the
complex thing.

(C) Dhruv Batra 60



Intuition

3
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-
KL divergence:

Distance between distributions

« Given two distributions p and g KL divergence:

* D(pllg) = 0 iff p=q

* Not symmetric — p determines where difference is
Important

(C) Dhruv Batra Slide Credit: Carlos Guestrin 62



Find simple approximate distribution

« Suppose p is intractable posterior
« Want to find simple g that approximates p
« KL divergence not symmetric

* D(plla)
— true distribution p defines support of diff.

— the “correct” direction
— will be intractable to compute

* D(allp)
— approximate distribution defines support

— tends to give overconfident results
— will be tractable

(C) Dhruv Batra Slide Credit: Carlos Guestrin 63



- 001
Example 1

« p = 2D Gaussian with arbitrary co-variance
« = 2D Gaussian with diagonal co-variance

argmin_q KL (p || 9) argmin_q KL (q || p)
1 - 1 -
Z9 <2
0 - 0 -
0 0.5 2 1 0 0.5 21

(b) (@)

(C) Dhruv Batra p = Green; q = Red 64



Example 2

* p = Mixture of Two Gaussians
* q=3Single Gaussian )J ,§

Dhruv Batra p = Blue; g = Red

65




