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State-of-the-Art Visual Recognition
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State-of-the-Art Visual Recognition
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State-of-the-Art Visual Recognition
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Physical agent
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Physical agent
capable of taking
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Applications

Physical agent
capable of taking
actions in the worla
and talking to humans
in natural language

|s there smoke in any room
around you?
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Go there and look for people x
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Challenges

Egocentric vision
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Challenges

Slide credit: Abhishek Das Video Credit: Lee et al., 2012



Challenges

Active perception

Action

R ———

Observation

Agent controls incoming data distribution

Slide credit: Abhishek Das Video Credit; Lee et al., 2012



Challenges

Sparse rewards

Slide credit: Abhishek Das Image Credit: Image-Net



Challenges

Sparse rewards
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Challenges

Sparse rewards
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Challenges

Language understanding

Slide credit: Abhishek Das
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Standardizing the Embodied Al "software stack”



Standardizing the Embodied Al "software stack”
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Standardizing the Embodied Al "software stack”
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Standardizing the Embodied Al "software stack”

| |

Leave the bedroom, and enter the kitchen. Walk
forward, and take a left at the couch. Stop In
front of the window.

Vision-Language Navigation
(Anderson et al., 2018)



Standardizing the Embodied Al "software stack”

Habitat Platform
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Agent and Model Design

» 1.25m tall cylinder with 0.Tm radius




Agent and Model Design

» 1.25m tall cylinder with 0.Tm radius
» Actions:

» <stop>: Indicates the agent
believes it has completed the task

e <forward>: Moves 0.25m forward

» <left>, <right>: Turn 10 degrees
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Agent and Model Design
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Agent and Model Design
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Agent and Model Design

» How do we train this agent?
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» How do we train this agent?

» Both actions (they are discrete) and the
simulation are non-differential-able




Agent and Model Design

» How do we train this agent?

» Both actions (they are discrete) and the
simulation are non-differential-able

» Use reinforcement learning!
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Outline

RL Refresher/Advantage Actor Critic (A2C)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Application: PointGoal Navigation Results
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Rl Refresher




Rl Refresher

Objective: I [RT]

1
RT — Z R(St, CLt)
t=1



Reinforce

VQ lOg Wg(at | St) . RT



Advantage Actor Critic (A2C)

+ High variance: Vglogmg(a; | s¢) - R
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Advantage Actor Critic (A2C)

+ High variance: Vglogmg(a; | s¢) - Rr
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Advantage Actor Critic (A2C)

+ High variance: Vglogmg(a; | s¢) - Rr

» Use value-function as the baseline (A2C):

VQ lOg 0 (CLt

St> - (RT — V(S

A(at, St> —

A(st,at) = (R(

t))

» Reduce variance with baseline: Vg log mg(a; | s¢) - (R — b)

Q(at,s¢) — V(sy)




Advantage Actor Critic (A2C)

» A2C is great, but you can only use each rollout once!



Advantage Actor Critic (A2C)

» A2C is great, but you can only use each rollout once!

Why?



Advantage Actor Critic (A2C)

» A2C is great, but you can only use each rollout once!

» No theoretical grounding to do so



Advantage Actor Critic (A2C)

» Works poorly in-practice



Advantage Actor Critic (A2C)

7(0)]

» Works poorly in-practice

Image credit: Alberto Metelli, 2018
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Trust Region Policy Optimization (TRPO)

A2C Maximizes: jAQC (9) — l()g 7o (at St)A(St, CLt)




Trust Region Policy Optimization (TRPO)

Given a policy: q(at St)
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Collect experience and calculate advantage
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Trust Region Policy Optimization (TRPO)

Given a policy: q(at St)

Collect experience and calculate advantage

T Q(@t | St)

Aq(St, CLt) — R(St, CLt) -+ Vq(St_|_1) — Vq(St)

W@(@t St)

NN — . A4
Maximize: j(@) — q(at St) A (St, CLt>




Trust Region Policy Optimization (TRPO)

W@(@t 3t>

Imize: — . A1
Maxi j(@) q(at St> A (St, CLt)

Read as: Policy g (as | s¢) is better than q(a; | s¢)if it takes good actions
(A9(s¢,ar) > 0) more often and takes bad actions ( A%(ss, as) < 0) less often



Trust Region Policy Optimization (TRPO)

W@(Clt 5t>

aximize: — . A9
M T q(at | s¢) AN, 00)

Read as: DOhcyw@ Why thlS ObJGCJ[IV€7’d actions

(A9(s¢,a:) > 0) less often



Trust Region Policy Optimization (TRPO)

Given a policy: q(at St) — 7014 (at St)

Collect experience and calculate advantage

T Q(@t | St)

Aq(St, CLt) — R(St, CLt) -+ Vq(St_|_1) — Vq(St)

W@(@t St)

NN — . A4
Maximize: j(@) — q(at St) A (St, CLt>




Trust Region Policy Optimization (TRPO)

7(0)]

Image credit: Alberto Metelli, 2018



Trust Region Policy Optimization (TRPO)

» Use a trust-region!



Trust Region Policy Optimization (TRPO)

» PS 1 problem 1



Trust Region Policy Optimization (TRPO)

» PS 1 problem 1

* |n this problem, you showed that the gradient descent update rule
witTl) — () _ anW<t)

can be seen as the minimizer of the affine-lower bound of f (W)
subject to a trust-region:

Fw®) 4 (w—w®, Viw®) 4 D flw - wO
—,—/
%,—/

affine lower bound to f(-) proximity term



Trust Region Policy Optimization (TRPO)

FROG) = @A sa) - KL (me ) [ aec | s0)
N——— ————
importance-weighted advantage R EEEE—
proximity term
T At | St
() Tolar s

qat | s¢)



Trust Region Policy Optimization (TRPO)

» Advantage

» Able to perform multiple optimization steps per rollout



Trust Region Policy Optimization (TRPO)

» Advantage
» Able to perform multiple optimization steps per rollout
» Disadvantage

» Choosing the correct value for beta is challenging and problem/network
dependent
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RL Refresher/Advantage Actor Critic (A2C)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Application: PointGoal Navigation Results



Proximal Policy Optimization (PPO)



Proximal Policy Optimization (PPO)

&

OpenAlI Five

AlphaStar: Mastering the
Real-Time Strategy Game
StarCraft Il



Proximal Policy Optimization (PPO)

Given a policy: q(at St)
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Given a policy: q(at St) — 7014 (CLt St)



Proximal Policy Optimization (PPO)

Given a policy: q(at St) — 7014 (CLt St)

Objective: Maximize
0 (Clt | St)

"0 = 50

min(ry(0),1+¢€) if A9(s, ar) >0

PPO(9) — A4(s,.qa,) -
T = A a) {max(rt(e), 1 —e) if A9(s¢,a¢) <O



Proximal Policy Optimization (PPO)

min(rt(é’), 1 + E) it Aq(St, Clt) > ()

jPPO(é’) — Aq(St,CLt) - {max(rt(e), 1 _ 6) i f Aq(St,at) <



Proximal Policy Optimization (PPO)

min(rt(é’), 1 + E) it Aq(St, Clt) > ()

jPPO(é’) — Aq(St,CLt) - {max(rt(e), 1 _ 6) i f Aq(St,at) <

Aq(St, Clt) > ()

PPO
J




Proximal Policy Optimization (PPO)

min(rt(é’), 1 + E) it Aq(St, CLt) > ()

jPPO(é’) — Aq(St,CLt) - {max(rt(e), 1 _ 6) i f Aq(St,at) <

Al(sg,ar) >0 A(sg,as) <0

PPO
J




Proximal Policy Optimization (PPO)

» Advantage
» Able to perform multiple optimization steps per rollout

» epsilon=0.2 “just works” in a lot of cases

» Easily handles networks with hundreds of millions of parameters



Proximal Policy Optimization (PPO)

» Advantage
» Able to perform multiple optimization steps per rollout

» epsilon=0.2 “just works” in a lot of cases

» Easily handles networks with hundreds of millions of parameters
» Disadvantage

» Other methods are more sample efficient



A2C Implementation

1. Collect a set of trajectories using current policy

2. Update policy via step of A2C objective

3. Repeat



PPO/TRPO Implementation

1. Collect a set of trajectories using current policy

2. Forafew epochs (typically 2 or 4)

1. Sample mini batches from rollout (typically 2 or 4)

1. Update the policy via step of PPO/TRPO objective

3. Repeat
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RL Refresher/Advantage Actor Critic (A2C)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Application: PointGoal Navigation Results



PointGoal Navigation Results



SPL

1.00

0.80

0.60

0.40

0.20

0.00 £

Performance on Gibson Val

0.861
—— Best
—— Best@100M
20 40 60 30 100

Steps (experience) in millions



Qualitative Results
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RGB and GPS+Compass Top Down Map
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Visual Turing Test
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