CS 4803 / 7643: Deep Learning

Topics:
— Unsupervised Learning
— Generative Models
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Overview

« Unsupervised Learning

— Comparison to Supervised and Reinforcement Learning
— Review of K-Means

* e.g., Generative Models
— Varieties
— PixelRNN and PixelCNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Reinforcement vs Unsupervised
Learning

Supervised Learning

Given: (x, y)
X is data, y is label

Goal: Learn a functionto map x 2 y

Examples: Classification, regression, object
detection, semantic segmentation, image
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Reinforcement vs Unsupervised
Learning

Supervised Learning

Given: (x, y)

X is data, y is label —» Cat

Goal: Learn a functionto map x 2 y

Classification
Examples: Classification, regression, object

detection, semantic segmentation, image
captioning, etc. Iisnae  CCiublcdons

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Reinforcement vs Unsupervised
Learning

Supervised Learning

Given: (x, y)
X is data, y is label

Goal: Learn a functionto map x 2 y

DOG, DOG, CAT

Examples: Classification, regression, object Object Detection
detection, semantic segmentation, image
captioning, etc. Iisnae  CCiublcdons

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Reinforcement vs Unsupervised
Learning

Supervised Learning

Given: (x, y)
X is data, y is label

Goal: Learn a functiontomap x 2> y GRASS,
TREE, SKY
Examples: Classification, regression, object Semantic Segmentation

detection, semantic segmentation, image
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Supervised vs Reinforcement vs Unsupervised
Learning

Supervised Learning

Given: (x, y)
X is data, y is label

Goal: Learn a function to map x 2 ' A cat sitting on a suitcase on the floor
Examples: Classification, regression, object Image captioning
detection, semantic segmentation, image
captioning, etc. S

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Reinforcement vs Unsupervised

Learning
Reinforcement Learning
Given: (e, r)
Environment e, Reward function r (evaluative
feedback)

Goal: Maximize expected reward

Examples: Robotic control, video games,
board games, efc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Supervised vs Reinforcement vs Unsupervised
Learning

Reinforcement Learning

Given: (e, r)

Environment e, Reward function r (evaluative
feedback)

Goal: Maximize expected reward

Examples: Robotic control, video games,
board games, efc. Robotic Locomotion

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Reinforcement vs Unsupervised
Learning

Reinforcement Learning

Given: (e, r)

Environment e, Reward function r (evaluative
feedback)

Goal: Maximize expected reward

Examples: Robotic control, video games,
board games, efc. Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Reinforcement vs Unsupervised

Reinforcement Learning

Given: (e, r)

Environment e, Reward function r (evaluative

feedback)

Goal: Maximize expected reward

Examples: Robotic control, video games,

board games, efc.

Learning
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Supervised vs Reinforcement vs Unsupervised
Learning

Unsupervised Learning

Given: Data x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, dimensionality
reduction, feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Supervised vs Reinforcement vs Unsupervised
Learning

Unsupervised Learning ) o

Given: Data x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

K-means clustering
Examples: Clustering, dimensionality
reduction, feature learning, density
estimation, etc.

Thisi CCO Ui ]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Reinforcement vs Unsupervised

Learning
Unsupervised Learning
PCA mponent space
Given: Data x ,1 “*
Just data, no labels! SESSTioes
Goal: Learn some underlying hidden 3.4 > 2.4
structure of the data
Principal Component Analysis
Examples: Clustering, dimensionality (Dimensionality reduction)
reduction, feature learning, density .

estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Reinforcement vs Unsupervised
Learning

Unsupervised Learning

1-d density estimation

Given: Data x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

2-d density estimation

Examples: Clustering, dimensionality
reduction, feature learning, density .
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Tasks

(C) Dhruv Batra

Supervised Learning
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(C) Dhruv Batra Slide Credit: Carlos Guestrin 17



= Auton’s Graphics =]

K-means |-

1. Ask user how many clusters | o8 T
they'd like. (e.g. k=5)
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(C) Dhruv Batra Slide Credit: Carlos Guestrin 18



K-means

1. Ask user how many clusters
they'd like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

(C) Dhruv Batra
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Slide Credit: Carlos Guestrin
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= Auton’s Graphics =]

K-means |-

1. Ask user how many clusters | o.s
they'd like. (e.g. k=5)

2. Randomly guess k cluster
Center locations o

3. Each datapoint finds out
which Center it's closest to.

0.4

0.2

x0

(C) Dhruv Batra Slide Credit: Carlos Guestrin 20



= Auton’s Graphics =]

K-means |-

1. Ask user how many clusters | o.s
they'd like. (e.g. k=5)

2. Randomly guess k cluster
Center locations o

3. Each datapoint finds out
which Center it's closest to.

4. Each Center finds the centroid | o.4
of the points it owns...

0.2

x0

(C) Dhruv Batra Slide Credit: Carlos Guestrin 21



= Auton’s Graphics =]

K-means |-

1. Ask user how many clusters | o8 T
they'd like. (e.g. k=5)

2. Randomly guess k cluster
Center locations 5B+

3. Each datapoint finds out
which Center it's closest to.

4. Each Center finds the centroid | 0.4 +
of the points it owns...

5. ...and jumps there

6. ...Repeat until terminated! 0.2

—
o
——
o
e
——

x0

(C) Dhruv Batra Slide Credit: Carlos Guestrin 22
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K-means

e Demo
— http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

(C) Dhruv Batra 23


http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

-]
K-means

« Randomly initialize k centers
— O =@ O

* Assign:
— Assign each point ie{1,...n} to nearest center:

- C(t) «— argmin |[x; — s
j

* Recenter:
— 1 becomes centroid of its points

(C) Dhruv Batra Slide Credit: Carlos Guestrin 24



]
What is K-means optimizing?

* Objective F(u,C): function of centers p and point allocations C:

N
F(p,C) = Z % — Mc(z‘)Hz
i=1

— 1-of-k encoding

* Optimal K-means:
— min,min, F(p,a)

(C) Dhruv Batra 25



]
Coordinate descent algorithms

« Want: min, min, F(a,b)

» Coordinate descent:
— fix a, minimize b
— fix b, minimize a
— repeat

* Converges!!!
— if F is bounded
— to a (often good) local optimum

 K-means is a coordinate descent algorithm!

(C) Dhruv Batra Slide Credit: Carlos Guestrin 26



]
K-means as Co-ordinate Descent

« Optimize objective function:

K1, HE @y,..., anN K1, HE @1,..., anN

N k
min  min F(g,a) = min  min Z Zainxi — ;|7
i=1 j=1

» Alternate between
— Fix u, optimize a (i.e. C)
— Fix a (i.e. C), optimize n

(C) Dhruv Batra Slide Credit: Carlos Guestrin 27



Supervised vs Unsupervised Learning

Supervised Learning

Given: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Reinforcement Learning Unsupervised Learning

Given: (e, r) Given: Data x

Environment e, Reward function r Just data, no labels!
(evaluative feedback)

Goal: Learn some underlying
Goal: Maximize expected reward hidden structure of the data

Examples: Robotic control, video Examples: Clustering,
games, board games, etc. dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Given: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Reinforcement Learning Unsupervised Learning

Training data is cheap
Given: (e, r) Given: Data x
Environment e, Reward function r Just data, no labels!
(evaluative feedback)

Goal: Learn some underlying
Goal: Maximize expected reward hidden structure of the data

Examples: Robotic control, video/ Examples: Clustering,
games, board games, etc. dimensionality reduction,
feature learning, density
estimation, etc.

Holy grail: Solve
unsupervised learning
=> understand structure
of visual world

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Models

Given training data, generate new samples from same distribution

A o+

Training data ~ pyata(X) Generated samples ~ pmodel(X)

| -

Want to learn pyoqge(X) similar to pyata(X)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



]
Generative Classification vs
Discriminative Classification vs
Density Estimation

» Generative Classification
— Model p(x, y); estimate p(x|y) and p(y)
— Use Bayes Rule to predict y
— E.g Naive Bayes

« Discriminative Classification (not a Generative Model)
— Estimate p(y|x) directly
— E.g. Logistic Regression

* Density Estimation
— Model p(x)
— E.g. VAEs

(C) Dhruv Batra 31



Flgures fror

Why Generative Models?

Realistic samples for artwork, super-resolution, colorization, etc.

Generative models of time-series data can be used for
simulation and planning (model based reinforcement learning!)

Training generative models can also enable inference of latent
representations that can be useful as general features

n L-Rare copyright: (1) Alec Radford et al, 2016 () David Berthelot et al, 2017; Phillip Isola etal, 2017. Reproduced with authors permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/

Generative Models

Given training data, generate new samples from same distribution

| m——
Training data ~ pyata(X) Generated samples ~ pmodel(X)

Want to learn ppogel(X) similar to pgata(X)
Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for py,ogei(X)
- Implicit density estimation: learn model that can sample from pp,.qei(X) W/0 explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




]
Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density L@y el
GSN
Fully Visible Belief Nets \

- NADE _ / _

- MADE Variational Markov Chain

- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



]
Taxonomy of Generative Models

Direct
We will discuss 3 most GAN|
popular types of generative Generative models
models / \
Explicit density Implicit density
Tractable density Approximate density ey Clizln

Fully Visible Belief Nets N \ GSN

- NADE — _

- MADE Variational Markov Chain

- |PixeIRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN



]
Fully Visible Belief Network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
mn

p(x) = Hp(:z:z-|a;1, ey Ti—1)
oo

Likelihood of Probability of i'th pixel value
image x given all previous pixels

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



]
Fully Visible Belief Network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
mn

p(x) = Hp(:z:z-|a;1, ey Ti—1)
oo

Likelihood of Probability of i'th pixel value
image x given all previous pixels
Complex distribution over pixel values

e . => Express using a neural
Then maximize likelihood of training data network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



]
Fully Visible Belief Network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = | [ p(@ilas, ..., zi—1)
f =1 f Will need to define ordering
Likelihood of Probability of i'th pixel value of “previous pixels”
image x given all previous pixels
Complex distribution over pixel values
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



target chars: “e” 1k “I" KO3

Example: 1.0 05 0.1 0.2

Character-level output layer | %2 e o i

Language Model 4.1 12 21 2.2
[ N . 2

VocabUIary: hidden layer .%:i - (1)2 > _(())15 W—m; -(())g

[h,e,l,0] 0.9 0.1 03 0.7
. R N E U2

Example training ; 5 = 5

sequence: input layer | 2 : e :

“hello” l o B =

input chars:  “p” “e” “I” “I”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

O O O O ©
O O O O O
O O O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

o1

O O O O O

Dependency on previous pixels modeled
using an RNN (LSTM)

O O O
O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

O O

O O O

O O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



I ——.——————.——
Test Time: Sample / Argmax / Beam

Search
Example: Sample 4
Character-level 03
Language Model Sormax &
Sampling v
output layer %%
4.1
Vocabulary: ]
[h,e,I,O] hidden layer .%:: I
0.9
At test-time sample T
1
characters one at a inputlayer | @
time, feed back to -
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



I ——.——————.——
Test Time: Sample / Argmax / Beam

Search .
Example: Sample ﬂ
Character-level 03
Language Model Sofimax | &
Sampling v
output layer %%
41
Vocabulary: ]
[h y e y I ,O] hidden layer .%3%
0.9
At test-time sample T
1 0
characters one at a inputlayer | @ /
time, feed back to L
input chars:  “h e
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



I ——.——————.——
Test Time: Sample / Argmax / Beam

Search -
Example: Sample ﬂ A
Character-level CA I
Language Model sotmax SEM| 1
Sampling b | s
output layer %% (:%
4.1 "2
Vocabulary: ] T
[h,e,I,O] hidden layer .%3% (1)2 —
0.9 0.1
At test-time sample T T
1 0
characters one at a inputlayer | @ 1
time, feed back to L
input chars:  “h e
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



I ——.——————.——
Test Time: Sample / Argmax / Beam

Example: Seargﬂple ﬂ [\ I/\ .

Character-level 03 2s || | a1
Language Model softmax— el 1t st |5
Sampling Al A A A
output layer %% (:% (1)3 :(1)?
4.1 12 .1 2.2
Vocabulary: ! T ] [ W_ny
[h,e,I,O] hidden layer .%:: (1)2 -%15 wonh _(?g
0.9 0.1 -0.3 0.7
At test-time sample T T T Jw
1 0 0 0
characters one at a input layer | 0 . : ;
time, feed back to L \“’ \"’
input chars: “h e | I
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

O O«

o O
O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

O O O O

O O O O O




PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Slide Credit: Fei-Fei Li, Justin Johnson,

0 T 255

~

/ ~
11 N
'y
/
/
/

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Serena Yeung, CS 231n
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Conv-1

Conv-2

Conv-15

JoAe| xewjos




Masked Convolutions

* Apply masks so that a pixel does not see
“future” pixels

O000O0
O0O00O0
OO @ OO masked convolution
oNeNe . oNe
! 1|11
|
d) w/ 11010
O /@ O ololo
o X NoXe

(C) Dhruv Batra 53



P ixe I C N N [van der Oord et al. 2016]

Still generate image pixels starting from Softmax loss at each pixel

corner i I i

Dependency on previous pixels now N
modeled using a CNN over context region - /

Training: maximize likelihood of training
images

n

p(x) = Hp(a:dwl, ooy Ti—1)

=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




P ixe I C N N [van der Oord et al. 2016]

Still generate image pixels starting from Softmax loss at each pixel

corner i I i

Dependency on previous pixels now N
modeled using a CNN over context region - /

Training: maximize likelihood of training
images

Training is faster than PixelRNN

(can parallelize convolutions since context - -
region values known from training images) |
Generation must still proceed sequentially

=> still slow
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Generation Samples (PixelRNN)
€ W L5 Rl D
e i0REA 2w TR

A | RS
GRS My K
e gl Y el

ﬁliﬁb‘ﬁ

32x32 CIFAR-10 32x32 ImageNet

EEIIHIIIﬂﬁ

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Completion

occluded completions original

» A " ol o "“. "ol -l | ' ol
. A |l b
) ’j‘, T - :
;
’
1

Figure 1. Image completions sampled from a PixelRNN.




- 000000000000000__]
Results from generating sounds

» https://deepmind.com/blog/wavenet-generative-model-raw-audio/



https://deepmind.com/blog/wavenet-generative-model-raw-audio/

..,
PixelRNN and PixelCNN

Pros:
- Can explicitly compute | P elCNN berf
. . mproving Pixe performance
likelihood p(X) - Gated convolutional layers
- Explicit likelihood of - Short-cut connections
. . - Discretized logistic loss
trammg.data gives good - Mulfi-scale
evaluation metric - Training tricks
- Good samples - Ete...
See
Con: - Van der Oord et al. NIPS 2016
on: - Salimans et al. 2017
- Sequential generation (PixelCNN++)
=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Conclusion

« Unsupervised Learning

— Comparison to Supervised and Reinforcement Learning
— Review of K-Means

* e.g., Generative Models
— Varieties
— PixelRNN and PixelCNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The End



