CS 4803 / 7643: Deep Learning

Topics:

- Policy Gradients
- Actor Critic

Ashwin Kalyan Georgia Tech

Topics we'll cover

- Overview of RL
 - RL vs other forms of learning
 - RL "API"
 - Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration (recap)
 - Q-Value Iteration (new)
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)
 - Actor-Critic

Recap: MDPs

- Markov Decision Processes (MDP):
 - States: ${\cal S}$
 - Actions: ${\cal A}$
 - Rewards: $\mathcal{R}(s,a,s')$
 - Transition Function: $\mathbb{T}(s,a,s')=p(s'|s,a)$
 - Discount Factor: γ

Recap: Optimal Value Function

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$Q^*(s, a) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

Recap: Optimal Value Function

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$Q^*(s, a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

Optimal policy:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Recap: Learning Based Methods

- Typically, we don't know the environment
 - $\mathbb{T}(s, a, s')$ unknown, how actions affect the environment.
 - $\mathcal{R}(s,a,s')$ unknown, what/when are the good actions?

Recap: Learning Based Methods

- Typically, we don't know the environment
 - $\mathbb{T}(s, a, s')$ unknown, how actions affect the environment.
 - $\mathcal{R}(s,a,s')$ unknown, what/when are the good actions?
- But, we can learn by trial and error.
 - Gather experience (data) by performing actions.

$$\{s, a, s', r\}_{i=1}^{N}$$

Approximate unknown quantities from data.

Recap: Deep Q-Learning

- Collect a dataset $\{(s,a,s',r)_i\}_{i=1}^N$
- Loss for a single data point:

$$\operatorname{MSE\ Loss} := \left(\underbrace{Q_{new}(s,a)} - (r + \max_{a} Q_{old}(s',a)) \right)^2$$
 Predicted Q-Value Target Q-Value

Act according optimally according to the learnt Q function:

$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q(s, a)$$

Pick action with best Q value

ullet Class of policies defined by parameters heta

$$\pi_{\theta}(a|s): \mathcal{S} \to \mathcal{A}$$

• Eg: heta can be parameters of linear transformation, deep network, etc.

ullet Class of policies defined by parameters heta

$$\pi_{\theta}(a|s): \mathcal{S} \to \mathcal{A}$$

- Eg: heta can be parameters of linear transformation, deep network, etc.
- Want to maximize:

$$J(\pi) = \mathbb{E}\left[\sum_{t=1}^{T} \mathcal{R}(s_t, a_t)\right]$$

• In other words,

$$\pi^* = \arg \max_{\pi: \mathcal{S} \to \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^T \mathcal{R}(s_t, a_t) \right] \longrightarrow \theta^* = \arg \max_{\theta} \mathbb{E} \left[\sum_{t=1}^T \mathcal{R}(s_t, a_t) \right]$$

ullet Class of policies defined by parameters heta

$$\pi_{\theta}(a|s): \mathcal{S} \to \mathcal{A}$$

- Eg: heta can be parameters of linear transformation, deep network, etc.
- Want to maximize:

$$J(\pi) = \mathbb{E}\left[\sum_{t=1}^{T} \mathcal{R}(s_t, a_t)\right]$$

• In other words,

$$\pi^* = \arg \max_{\pi: \mathcal{S} \to \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^T \mathcal{R}(s_t, a_t) \right] \longrightarrow \theta^* = \arg \max_{\theta} \mathbb{E} \left[\sum_{t=1}^T \mathcal{R}(s_t, a_t) \right]$$

- Slightly rewriting the notation:
 - Let $au = (s_0, a_0, \dots s_T, a_T)$, the trajectory

$$p_{\theta}(\tau) = p_{\theta}(s_0, a_0, \dots s_T, a_T)$$

$$= \prod_{t=0}^{T} p_{\theta}(a_t \mid s_t) \cdot p(s_{t+1} \mid s_t, a_t)$$

$$\arg\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\mathcal{R}(\tau) \right]$$

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\mathcal{R}(\tau) \right]$$

$$= \mathbb{E}_{a_{t} \sim \pi(\cdot | s_{t}), s_{t+1} \sim p(\cdot | s_{t}, a_{t})} \left[\sum_{t=0}^{T} \mathcal{R}(s_{t}, a_{t}) \right]$$

Sample a few trajectories $\{ au_i\}_{i=1}^N$ by acting according to $\pi_{ heta}$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} r(s_t^i, a_t^i)$$

REINFORCE

- 1. Sample trajectories $\tau_i = \{s_1, a_1, \dots s_T, a_T\}_i$ by acting according to π_{θ}
- 2. Compute policy gradient as

$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} \mid s_{t}^{i}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}^{i} \mid a_{t}^{i}) \right]$$

3. Update policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \end{split} \qquad \text{Expand expectation} \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Expand expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Exchange integration and expectation} \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Expand expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Exchange integration and expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \cdot \frac{\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} \cdot \mathcal{R}(\tau) d\tau \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Expand expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Exchange integration and expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \cdot \frac{\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} \cdot \mathcal{R}(\tau) d\tau \\ &= \int \nabla_{\theta} \log \pi(\tau) = \frac{\nabla_{\theta} \pi(\tau)}{\pi(\tau)} \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Expand expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Exchange integration and expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \cdot \frac{\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} \cdot \mathcal{R}(\tau) d\tau \\ &= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \nabla_{\theta} \log \pi(\tau) = \frac{\nabla_{\theta} \pi(\tau)}{\pi(\tau)} \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Expand expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \text{Exchange integration and expectation} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \cdot \frac{\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} \cdot \mathcal{R}(\tau) d\tau \\ &= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau \qquad \nabla_{\theta} \log \pi(\tau) = \frac{\nabla_{\theta} \pi(\tau)}{\pi(\tau)} \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau)] \end{split}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) \right]$$

$$\nabla_{\theta} \left[\log p(s_0) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t) + \sum_{t=1}^{T} \log p(s_{t+1}|s_t, a_t) \right]$$

$$p_{\theta}(\tau) = p_{\theta}(s_0, a_0, \dots s_T, a_T)$$

$$= \prod_{t=0}^{T} p_{\theta}(a_t \mid s_t) \cdot p(s_{t+1} \mid s_t, a_t)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) \right]$$

$$\nabla_{\theta} \left[\log p(s_{\theta}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \sum_{t=1}^{T} \log p(s_{t+1}|s_{t},a_{t}) \right]$$

Doesn't depend on Transition probabilities!

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) \right] \\ & \nabla_{\theta} \left[\log p(s_{\theta}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \sum_{t=1}^{T} \log p(s_{t+1}|s_{t},a_{t}) \right] \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t},a_{t}) \right] \end{aligned}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) \right]$$

$$\nabla_{\theta} \left[\log p(s_{0}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \sum_{t=1}^{T} \log p(s_{t+1}|s_{t}, a_{t}) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}, a_{t}) \right]$$

$$s_{t}$$

$$\pi_{\theta}(\mathbf{a}_{t}|s_{t})$$

$$a_{t}$$

REINFORCE

- 1. Sample trajectories $\tau_i = \{s_1, a_1, \dots s_T, a_T\}_i$ by acting according to π_{θ}
- 2. Compute policy gradient as

$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} \mid s_{t}^{i}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}^{i} \mid a_{t}^{i}) \right]$$

3. Update policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Pong from pixels

Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from pixels

Pong from pixels

Image Credit: http://karpathy.github.io/2016/05/31/rl/

Intuition

(C) Dhruv Batra 33

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) \right] \\ & \nabla_{\theta} \left[\log p(s_{\theta}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \sum_{t=1}^{T} \log p(s_{t+1}|s_{t},a_{t}) \right] \end{aligned}$$
$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t},a_{t}) \right]$$

Formalizes notion of "trial and error":

- If reward is high, probability of actions seen is increased
- If reward is low, probability of actions seen is reduced

Issues with Policy Gradients

- Credit assignment is hard!
 - Which specific action led to increase in reward
 - Suffers from high variance → leading to unstable training

Issues with Policy Gradients

- Credit assignment is hard!
 - Which specific action led to increase in reward
 - Suffers from high variance → leading to unstable training
- How to reduce the variance?
 - Subtract a constant from the reward!

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}, a_{t}) - \frac{\mathbf{b}}{\mathbf{b}} \right]$$

Issues with Policy Gradients

- Credit assignment is hard!
 - Which specific action led to increase in reward
 - Suffers from high variance → leading to unstable training
- How to reduce the variance?
 - Subtract a constant from the reward!

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}, a_{t}) - \frac{b}{b} \right]$$

- Why does it work?What is the best choice of b?

Taking a step back

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}, a_{t}) \right]$$

Policy Evaluation (Recall Policy iteration)

- REINFORCE: Evaluate and update policy based on Monte-Carlo estimates of the total reward – very noisy!
- Other ways of policy evaluation?
 - If we had the Q function, we could have used it!

- Learn both policy and Q function
 - Use the "actor" to sample trajectories
 - Use the Q function to "evaluate" or "critic" the policy

- Learn both policy and Q function
 - Use the "actor" to sample trajectories
 - Use the Q function to "evaluate" or "critic" the policy

• REINFORCE:
$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$$

• Actor-critic:
$$\nabla_{\theta}J(\pi_{\theta}) = \mathbb{E}_{a\sim\pi_{\theta}}\left[\nabla_{\theta}\log\pi_{\theta}(a|s)Q^{\pi_{\theta}}(s,a)\right]$$

- Learn both policy and Q function
 - Use the "actor" to sample trajectories
 - Use the Q function to "evaluate" or "critic" the policy
- REINFORCE: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$
- Actor-critic: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s,a) \right]$
- ullet Q function is unknown too! Update using $\mathcal{R}(s,a)$

• Initialize s, θ (policy network) and β (Q network)

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $\,Q_{eta}(s,a)\,$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $\,Q_{\beta}(s,a)\,$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a \mid s) Q_{\beta}(s, a)$$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $Q_{\beta}(s,a)$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a \mid s) Q_{\beta}(s, a)$$

- Update "critic":
 - Recall Q-learning

MSE Loss :=
$$\left(Q_{new}(s, a) - (r + \max_{a} Q_{old}(s', a))\right)^2$$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $Q_{\beta}(s,a)$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a \mid s) Q_{\beta}(s, a)$$

- Update "critic":
 - Recall Q-learning

$$MSE Loss := \left(\frac{Q_{new}(s, a)}{-(r + \max_{a} Q_{old}(s', a))}\right)^{2}$$

- Update etaAccordingly
- $a \leftarrow a', s \leftarrow s'$

- In general, replacing the policy evaluation or the "critic" leads to different flavors of the actor-critic
 - REINFORCE:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$$

• Q – Actor Critic

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a) \right]$$

- In general, replacing the policy evaluation or the "critic" leads to different flavors of the actor-critic
 - REINFORCE:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$$

• Q – Actor Critic

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a) \right]$$

Advantage Actor Critic:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi_{\theta}}(s, a) \right]$$
$$= Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$

"how much better is an action than expected?

Summary

- Policy Learning:
 - Policy gradients
 - REINFORCE
 - Reducing Variance (Homework!)
- Actor-Critic:
 - Other ways of performing "policy evaluation"
 - Variants of Actor-critic