CS 4803 / 7643: Deep Learning

Topics:
— Policy Gradients
— Actor Critic

Ashwin Kalyan
Georgia Tech

Topics we’ll cover

* Reinforcement learning

» Policy-based RL (Policy gradients)
» Actor-Critic

Recap: MDPs

* Markov Decision Processes (MDP):
e States: S
e Actions: A
. Rewards:R(S, a, S,)
* Transition Function: T(S, a, 5/) — p(S/‘S, a)
e Discount Factor: 7Y

Recap: Optimal Value Function

The optimal Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and acting optimally thereafter

Q*(s,a) =E Zytrﬂso =s,a0 = a,m"
t>0

Recap: Optimal Value Function

The optimal Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and acting optimally thereafter

Q*(s,a) =E Zytrﬂso =s,a0 = a,m"
t>0

Optimal policy:

T*(s) = arg max Q*(s,a)

Recap: Learning Based Methods

* Typically, we don’t know the environment
* T(s,a,s’) unknown, how actions affect the environment.

* R(s,a, s') unknown, what/when are the good actions?

Recap: Learning Based Methods

* Typically, we don’t know the environment
* T(s,a,s’) unknown, how actions affect the environment.

* R(s,a, s') unknown, what/when are the good actions?

* But, we can learn by trial and error.
» Gather experience (data) by performing actions.

N
{s,a,s',r},_,

* Approximate unknown quantities from data.

- 000000000000000__]
Recap: Deep Q-Learning

+ Collect a dataset {(s,a,s’,7);} v,
* Loss for a single data point:

MSE Loss := (Qnew(s, a) — (r+ max Qota(s’, a))>2

\ J L
) £ \ §

Predicted Q-Value Target Q-Value

e Act according optimally according to the learnt Q function:

m(s) = arg max Q(s, a)
)\ 4

Pick action with best Q value

Getting to the optimal policy

Use value / policy
iteration

known

Transition functionT Obtain “optimal” policy
and reward function R

Getting to the optimal policy

Use value / policy
iteration

known

Transition functionT Obtain “optimal” policy
and reward function R

unknown

: Previous class:
Estimate Q values)
From data Q - learning

10

Getting to the optimal policy

Use value / policy

iteration
known
Transition function T Obtain “optimal” policy
and reward function R Estimate Tand R
from data
unknown
Estimate Q values Homework!
From data

11

Getting to the optimal policy

unknown

Transition function T — Obtain “optimal” policy

and reward function R

This class!

12

Learning the optimal policy

* Class of policies defined by parameters 0
mo(als) : S — A

« Eg: () can be parameters of linear transformation, deep network, etc.

13

- 000}
Learning the optimal policy

* Class of policies defined by parameters 0
mo(als) : S — A

« Eg: () can be parameters of linear transformation, deep network, etc.
* Want to maximize:
J(m)=E

Z R (s, a,t)]

t=1

* |n other words,
T

ZR(st,at)] —) H*Zargmng

t=1

7" = arg max [E

mS—A

14

- 000}
Learning the optimal policy

* Class of policies defined by parameters 0
mo(als) : S — A

« Eg: () can be parameters of linear transformation, deep network, etc.
* Want to maximize:
J(m)=E

Z R (s, a,t)]

t=1

* |n other words,
T

ZR(st,at)] —) H*Zargmng

t=1

7" = arg max [E

mS—A

15

Learning the optimal policy

* Slightly rewriting the notation:
e let7T = (SO, ag, . .. ST, aT), the trajectory

po(T) = po(s0,a0,...ST,ar)

T
= Hpe(at | st) - p(St41 | 5e, ae)
t=0

arg m@ax ETNpe (1) [R(T)]

16

Learning the optimal policy

J(e) — ETNP@(T) [R(T)] T
= B, mon(-[51). 5021 00p(-|5¢.00) {Z R(St,at):|

t=0

Sample a few trajectories {Tf,;},fil by acting according to 779

%%szt,at

1=1 t=1

17

REINFORCE

1. Sample trajectories 7i = {s1,a1, ...

2. Compute policy gradient as

T
V@J(@)%Z[ZVQIOgWQ al | st) ZR st]at]
t=1 t=1

)

sT,ar}i by acting according to g

3. Update policy 6 < 6+ aVyJ(0)

Run the pglicy apd Compute policy gradient Update policy
sample trajectories

Slide credit: Sergey Levine 18

Policy Gradients
VQJ(0> — VQ]ETNpe (1) [R(T>]

= V@ /7‘(‘9 (T)R(T)dT Expand expectation

19

Policy Gradients
VQJ(0> — VQ]ETNpe (1) [R(T>]

= V@ /7‘(‘9 (T)R(T)dT Expand expectation

— / Vo (T)R(T)dT Exchange integration and expectation

20

Policy Gradients
VQJ(0> — VQ]ETNpe (1) [R(T>]

= V@ /7‘(‘9 (T)R(T)dT Expand expectation

— / Vo (T)R(T)dT Exchange integration and expectation

21

Policy Gradients
VQJ(0> — VQ]ETNpe (1) [R(T>]

= V@ /7‘(‘9 (T)R(T)dT Expand expectation

— / Vo (T)R(T)dT Exchange integration and expectation

22

Policy Gradients
VQJ(0> — VQ]ETNpe (1) [R(T>]

= V@ /7‘(‘9 (T)R(T)dT Expand expectation

— / Vo (T)R(T)dT Exchange integration and expectation

23

Policy Gradients
VQJ(0> — VQ]ETNpe (1) [R(T>]

= V@ /7‘(‘9 (T)R(T)dT Expand expectation

— /VQWO (T)R(T)dT Exchange integration and expectation
_ mo(T)
= | Vgmg(7) R(T)dT
7o (T)
— /WQ(T)VQ log g (T)R(7)dT Vologm(1) = vg?%ﬂ
T\T

24

Policy Gradients
Vo (0) =Erp(r) [79 log 7o (T)R(T)]

J
|

T T
logp(so) + Y _logmg(arls:) + > logp(sesa | s, at)]

t=1 t=1

Vi

po(T) = po(so,ag,-..sr,ar)
T

— ____pe(at | s¢) - p(St41 | ¢, a¢)
t=0

25

Policy Gradients
Vo (0) =Erp(r) [79 log 7o (T)R(T)]

|
J Doesn’t depend on

T T
logploy) + Z log g (az|st) + ZWW)] Transition probabilities!
t=1 t=1

Vi

26

Policy Gradients
V@J(@) — ETNPQ(T) [Y@ log 70 (T?R(T)]
|
legptay) + Zlog mo(az|se) + Z%ﬁﬁ@?)]

Vo

i T
— ETNPG(T) ZV@ lOg 70 CLt‘St ZR St,at
=1 t=1

27

Policy Gradients
Vo (0) = Erpy(r) [V log 7o (T)R(7)]

|
logptom) + Z log mg (asst) + Z*@g-?émﬂ-swvs)]

Vo

i T
— ETNPG(T) ZV@ lOg 70 CLt‘St ZR St,CLt
=1 1

| t —
\
K
\
\ s \ N\ O\ F =
=
3\ h
\
\L_256

28

REINFORCE

1. Sample trajectories 7i = {s1,a1, ...

2. Compute policy gradient as

T
V@J(@)%Z[ZVQIOgWQ al | st) ZR st]at]
t=1 t=1

)

sT,ar}i by acting according to g

3. Update policy 6 < 6+ aVyJ(0)

Run the pglicy apd Compute policy gradient Update policy
sample trajectories

Slide credit: Sergey Levine 29

Pong from pixels

Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from pixels

raw pixels hidden layer

Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from pixels

forward pass - Supervised Learning
> log probabilities (correct label is provided)

-1.2 | -0.36
. block of differentiable compute .
'mage (e.g. neural net) i gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» log probabilities
-1.2 |-0.36 | —— sample an action:
. block of differentiable compute ,
'mage (e.g. neural net) gradients
0 -1.0

- eventual reward -1.0
backward pass

Image Credit: http://karpathy.github.io/2016/05/31/rl/

Intuition

uP DOWN UP uP DOWN DOWN DOWN uP

o—0——0 @ - @ - 4 @ @ WIN

o OVNgUP .o U, gDOWg P o P o LOSE

o .9 " .@ OV g DOWN GDOWN o DOWN o UP o LOSE
DOWNGUP g UP gDOWN G UP o WP o WIN

H N N

(C) Dhruv Batra 33

Policy Gradients
Vo (0) = Erpy(r) [V log 7o (T)R(7)]

|
loepton) + > logme(asls:) + Z*@g-?ésr-rrkswf)]

Vo

i T
— ETNPG(T) ZV@ lOg 70 CLt‘St ZR st,at
L t=1 t=1

Formalizes notion of “trial and error”:
* If reward is high, probability of actions seen is increased
* If reward is low, probability of actions seen is reduced

34

Issues with Policy Gradients

* Credit assignment is hard!
* Which specific action led to increase in reward
* Suffers from high variance = leading to unstable training

35

Issues with Policy Gradients

* Credit assignment is hard!
* Which specific action led to increase in reward
* Suffers from high variance = leading to unstable training

e How to reduce the variance?
e Subtract a constant from the rewardI

T
VoJ(0) =E p, () ZVglogm ag|st) ZR St,at) — b
1

t=1 t=

36

Issues with Policy Gradients

* Credit assignment is hard!
* Which specific action led to increase in reward
* Suffers from high variance = leading to unstable training

e How to reduce the variance?

e Subtract a constant from the reward!
T

VoJ(0) =E wp,(+) [Z Vo logmg(at|st) ZR St,at) — b

t=1 t=1

* Why does it work?
Homework!
 What is the best choice of b?

37

Taking a step back

T T
Vo (0) =Erepyr) | > Vologma(arlse) - > R(st, ax)

t=1 t=1 l

Policy Evaluation
(Recall Policy iteration)

* REINFORCE: Evaluate and update policy based on Monte-Carlo estimates of
the total reward — very noisy!
* Other ways of policy evaluation?
* |f we had the Q function, we could have used it!

38

Actor-Critic

 Learn both policy and Q function
* Use the “actor” to sample trajectories
* Use the Q function to “evaluate” or “critic” the policy

39

Actor-Critic

 Learn both policy and Q function
* Use the “actor” to sample trajectories
* Use the Q function to “evaluate” or “critic” the policy

* REINFORCE: Vg J (7g) = Eymr, [V logmg(als)R (s, a)l

» Actor-critic: Vg J(mg) = Eqr, [Vologmg(a|s)Q™ (s, a)]

40

Actor-Critic

 Learn both policy and Q function
* Use the “actor” to sample trajectories
* Use the Q function to “evaluate” or “critic” the policy

* REINFORCE: Vg J (7g) = Eymr, [V logmg(als)R (s, a)l
» Actor-critic: Vg J(mg) = Eqr, [Vologmg(a|s)Q™ (s, a)]
e Q function is unknown too! Update using R(S, a)

41

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)

42

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)

* sample action a ~ 7g(-|s)

43

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ 7g(-|s)

* For each step:
» Sample reward R(s, a) and next state s' ~ p(s’|s, a)

44

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ 7g(-|s)

* For each step:
» Sample reward R (s, a) and nextstate s' ~ p(s'[s, a)
* evaluate “actor” using “critic” (Q3(s, a)

45

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ 7g(-|s)

* For each step:
» Sample reward R (s, a) and nextstate s' ~ p(s'[s, a)
* evaluate “actor” using “critic” QB(S, a) and update policy:

0+ 0+ aVylogmg(a | s)Qs(s,a)

46

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ 7g(-|s)

* For each step:
» Sample reward R (s, a) and nextstate s' ~ p(s'[s, a)
» evaluate “actor” using “critic” QB(S, a) and update policy:

0+ 0+ aVylogmg(a | s)Qs(s,a)

» Update “critic”:
* Recall Q-learning

MSE Loss := (Qnew(s, a) — (r+ o Qota(s’, a)))2

47

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ 7g(-|s)

* For each step:
» Sample reward R (s, a) and nextstate s' ~ p(s'[s, a)
» evaluate “actor” using “critic” QB(S, a) and update policy:

0+ 0+ aVylogmg(a | s)Qs(s,a)

» Update “critic”:
* Recall Q-learning
2
MSE Loss := (Qnew(s, a) — (r + max Quq(s’, a)))
a
* Update (FAccordingly

/ /
e 4+ a,5¢+ S
48

Actor-critic

* In general, replacing the policy evaluation or the “critic” leads to
different flavors of the actor-critic
* REINFORCE:

VodJ(m9) = Eqmr, [Vologmg(als)R(s,a)l
* Q— Actor Critic

VQJ(T‘-Q) — EGNWQ [VQ log 779(0’|S)Q7T0 (87 CL)]

49

Actor-critic

* In general, replacing the policy evaluation or the “critic” leads to
different flavors of the actor-critic
* REINFORCE:

VodJ(m9) = Eqmr, [Vologmg(als)R(s,a)l

e Q- Actor Critic

VQJ(T‘-Q) — EGNWQ [VQ log 779(0’|S)Q7T9 (87 CL)]
» Advantage Actor Critic:
Vod(m9) = Eqmr, [Vologmg(als)A™ (s, a)]

= Q" (s,a) = V™ (s)

“how much better is an action than expected?

summary

* Policy Learning:
e Policy gradients
* REINFORCE
e Reducing Variance (Homework!)
* Actor-Critic:
e Other ways of performing “policy evaluation”
 Variants of Actor-critic

51

