CS 4803/ 7643: Deep Learning

Topics:
— Dynamic Programming (Q-Value Iteration)
— Reinforcement Learning (Intro, Q-Learning, DQNS)

Nirbhay Modhe
Georgia Tech

Topics we’ll cover

* Overview of RL
« RL vs other forms of learning
« RL “API”
* Applications
« Framework: Markov Decision Processes (MDP’s)
« Definitions and notations
» Policies and Value Functions
« Solving MDP’s
« Value lteration (recap)
« Q-Value lteration (new)
« Policy lteration
« Reinforcement learning
« Value-based RL (Q-learning, Deep-Q Learning)
« Policy-based RL (Policy gradients)

Topics we’ll cover

 Framework: Markov Decision Processes (MDP’s)

« Solving MDP’s
« Value lteration (recap)
« Q-Value lteration (new)
« Policy lteration
« Reinforcement learning
« Value-based RL (Q-learning, Deep-Q Learning)

Recap

Recap

« Markov Decision Process (MDP)
— Defined by (5,«4, RaTy’Y)

S : set of possible states [start state = So optional terminal / absorbing state]
A : setof possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple
T(s, a, s"): transition probability distribution, also written as p(s’|s, a)
. discount factor

Recap

« Markov Decision Process (MDP)
— Defined by (5,«4, RaTy’Y)

S : set of possible states [start state = So optional terminal / absorbing state]
A : setof possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple
T(s, a, s"): transition probability distribution, also written as p(s’|s, a)
. discount factor

« Value functions, optimal quantities, bellman equation

* Algorithms for solving MDP’s

— Value lteration

Value Function

Following polic@that produces sample trajectories s, ag, ry, S, a4, ...

\S|=n
T axm A f=m

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 7

Value Function

Following policy 7T that produces sample trajectories s, ag, ro, Sq, a1, ---

How good is a state?
The value function at state s, is the expected cumulative reward from

state s (and following the policy thereafter):

Vi(s)=E Z%y relso = s, ﬂ- é\ -] 5
PG oy [s,a

T (“/9}

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 8

-
Value Function

Following policy 7T that produces sample trajectories s, ag, ro, Sq, a1, ---

How good is a state?
The value function at state s, is the expected cumulative reward from
state s (and following the policy thereafter):

Vi(s)=E Z’ytrt|so = 8,7

How good is a state-action pair?

The Q-value function at state s and action a, is the expected
cumulative reward from taking action a in state s (and following the
policy thereafter):

Q" (s,a) =E Zytrﬂso = S,a0 = Q, T
| £>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 9

Optimal Quantities

Given optimal policy ;7™ that produces sample trajectories s, ay, o, S1, ay, ... /]

How good is a state? " \j

The optimal value function at state s, and acting optimally thereafter

A p 1
Vis)=E Zytrﬂso =8, \/ !)

>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 10

- ___0_0___00000000000_]
Optimal Quantities

Given optimal policy ;7™ that produces sample trajectories s, ay, o, S1, ay, ...

How good is a state?
The optimal value function at state s, and acting optimally thereafter

Vis)=E Zytrﬂso =8,
>0

How good is a state-action pair?
The optimal Q-value function at state s and action a, is the expected

cumulative reward from taking action a in state s and acting optimally
thereafter

Q (s@) =E | > v'rilso = s,a0 = a, 7"

— >0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 11

- ___0_0___00000000000_]
Bellman Optimality Equations

 Relations: }
¢

V*(s) = max Q™ (s, a) *(s) = arg max Q*(s,a)

a

-

12

- ___0_0___00000000000_]
Bellman Optimality Equations

 Relations:

V*(s) = mgx Q*(s,a) 7 (s) = arg max Q*(s,a)

!
* Recursive optimality equations: ()(Q]S ,OD
Q*(s,a) =

13

- ___0_0___00000000000_]
Bellman Optimality Equations

 Relations:

V*(s) = mgx Q*(s,a) 7 (s) = arg max Q*(s,a)

* Recursive optimality equations:

/
“(s,a) = E r(s,a)+YW™*(s

@ea=, E o)X

14

- ___0_0___00000000000_]
Bellman Optimality Equations

 Relations:
Y,

V*(s) = mgx Q*(s,a) 7 (s) = arg max Q*(s,a)

* Recursive optimality equations:

Q*(Sva) — I [T (8,&) +7V*(S)]

s'~p(s’|s,a)

= 2180l (5.0) + V(o)

15

- ___0_0___00000000000_]
Bellman Optimality Equations

 Relations:

V*(s) = mgx Q*(s,a) 7 (s) = arg max Q*(s,a)

* Recursive optimality equations:

Q*(Sva) — I [T (8,&) +7V*(S)]

N s'~p(s’|s,a)

= ZpElna)lr(s.0) £V ()

_Zp |5a[sa)—l—vmaxw]

16

Bellman Optimality Equations

 Relations:

V*(s) = mgx Q*(s,a) 7 (s) = arg max Q*(s,a)

* Recursive optimality equations:

Q*(Sva) — I [T (8,&) +7V*(S)]

s'~p(s’|s,a)

=2 p (s 0)lr (,0)+ V(o)

17

]
Value lIteration (VI)

 Based on the bellman optimality equation

maXZp "Is,a) [r(s,a) +~yV* (s')]

18

Value lIteration (VI)

 Based on the bellman optimality equation

Vi(s) = maXZp "Is,a) [r(s,a) +yV* (s')]

« Algorithm)
— Initialize values of all states VO(_ Q00 0 ()

— While not converged:
« Foreachstate~___

Vz'+1(s)<—mc?xzp(|Saa)[(8,0) + V(s)]) \/‘
— N/ U

— Repeat until convergence (no change in values) Homework

Vi Vi Vveis oV VR

Time complexity per iteration O (|8 ‘ 2 |A|)

19

-
Q-Value lteration

« Value Iteration Update:

Vi—l—l(s) emgxzp(s/‘sva) [’I‘(S,CL) ’Vvi(s’)]
T ~

« Q-Value lteration Update:

Q" (s,a) +

20

Q-Value lteration

« Value Iteration Update:

Vi—l—l(s) Zp(s’gya,) [T(S,CL) ’Vvi(s/)]

« Q-Value lteration Update:

Q" (5,0) « Fp(elanc) | (s,0) + ymax Q¥(s',a")]

The algorithm is same as value iteration,
but it loops over actions as well as states

21

- 001
Policy Iteration

(C) Dhruv Batra 22

- 001
Policy Iteration

« Policy iteration: Start with arbitrary moand refine it.

o — M1 — Mo — ... —T

23

- 001
Policy Iteration

« Policy iteration: Start with arbitrary moand refine it.

o — M1 — Mo — ... —T
* Involves repeating two steps:
— Policy Evaluation: Compute V'™ (similar to VI)
— Policy Refinement: Greedily change actions as per V'™

9 — V7O 1 v — ... —a— VT
— -

24

- 001
Policy Iteration

« Policy iteration: Start with arbitrary moand refine it.

o — M1 — Mo — ... —T
* Involves repeating two steps:
— Policy Evaluation: Compute V'™ (similar to VI)
— Policy Refinement: Greedily change actions as per V'™

o — V™ —m — V" — S — 7 — V7

 Why do policy iteration?
— 7T7; often converges to@huch sooner than Vﬂ'i

25

]
Summary

* Value lteration
— Bellman update to state value estimates

« Q-Value lteration
— Bellman update to (state, action) value estimates

* Policy lteration
— Policy evaluation + refinement

26

- 001
Learning Based Methods

27

- 001
Learning Based Methods

« Typically, we don’t know the environment

- T(s, a, 5’) unknown, how actions affect the environment.

— R(S, a, S/) unknown, what/when are the good actions?
o~

28

Learning Based Methods

« Typically, we don’t know the environment

unknown, how actions affect the environment.

unknown, what/when are the good actions?

« But, we can learn by trial and error.

— Gather experience (data).by performing actions.
N

— Approximate unknown quantities from data.

Reinforcement Learning

29

- 001
Learning Based Methods

« Old Dynamic Programming Demo
— https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

 RL Demo

— https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

Reinforcement Learning

(C) Dhruv Batra 30

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

(Deep) Learning Based Methods

31

(Deep) Learning Based Methods

* |n addition to not knowing the environment,
sometimes the state space is too large.

32

(Deep) Learning Based Methods

* |n addition to not knowing the environment,
sometimes the state space is too large.

« A value iteration updates takes O Al)

— Not scalable to high dimensional states €.g.: RGB images.

33

- 001
(Deep) Learning Based Methods

* |n addition to not knowing the environment,
sometimes the state space is too large.

S—— -

. A value iteration updates takes O(|S|?|.A|)

— Not scalable to high dimensional states e.g.: RGB images.

« Solution: Deep Learning!
— Use deep neural networks to learn low-dimensional
representations.

Deep Reinforcement Learning

34

]
Reinforcement Learning

(C) Dhruv Batra 35

]
Reinforcement Learning

* Value-based RL
— (Deep) Q-Learning, approximating Q™ (W|th a deep

Q-network — ®(§ o @>

—

(C) Dhruv Batra 36

Reinforcement Learning

 Value-based RL

— (Deep) Q-Learning, approximating Q™ (s, a) with a deep
Q-network

* Policy-based RL
— Directly approximate optimal policy@«/ith a parametrized
polic 7-(-;

(C) Dhruv Batra 37

]
Reinforcement Learning

 Value-based RL

— (Deep) Q-Learning, approximating Q™ (s, a) with a deep
Q-network

* Policy-based RL

— Directly approximate optimal policy 7'(‘* with a parametrized
policy 71,y — —

* Model-based RL

— Approximatetransition function@(s’,a, 3) nd reward
JHActio w
— by looking-ahead in the (approx.) future!

/—————

(C) Dhruv Batra 38

]
Reinforcement Learning

 Value-based RL

— (Deep) Q-Learning, approximating Q™ (s, a) with a deep
Q-network

* Policy-based RL

— Directly approximate optimal policy 7'(‘* with a parametrized
policy 7-(;

« Model-based RL
— Approximate transition function T(s’,a, 3) and reward
function R(S, a)
— Plan by looking ahead in the (approx.) future!

Homework!

(C) Dhruv Batra 39

Value-based Reinforcement Learning

Deep Q-Learning

Deep Q-Learning

* Q-Learning with linear function approximatgg
Q(Saa;wvb) — w;_@—l_ ba -

— Has some theoretical guarantees

41

Deep Q-Learning yx\

* Q-Learning with linear function approximators

Q(s,a;w,b) = w, s+ b, @/) vﬁe

—_—
— Has some theoretical guarantees N

 Deep Q-Learning: Fit a deep Q-Network Q(s; a; %g
: : (FC= =values)

— Works well in practice —
FC-256

— Q-Network can take RGB images

19 (SE |

%g V(.0 Jlli%

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n 42

Deep Q-Learning

43

Deep Q-Learning

« Assume we have collected a dataset

{(37 a, 8/7 T)i 715\;1

—_—

e

« We want a Q-function that satisfies:

Q-Value Bellman Optimality

Q(s,0)= | E |r(s,a)+ymaxQ*(s',a)
s’rvp(?)q.s,a) N

—

« Loss for a single data point:

MSE Loss := n (r + max Qold(s,a a,)))2

Predicted Q-Value Target Q-Value

44

Deep Q-Learning
. Minibatch of {(s,a, s’, T)i1

Forward pass:

—

State

Bx D

» Q-Network

» Q-Values per action

B X NMactions

—————

45

Deep Q-Learning

. Minibatch of {(s,a,s’,7);}2,

 Forward pass: |sState|—{ Q-Network » Q-Values per action
B x D B x Nactions
o=
FC-4 (Q-values)
FC-256
Q-Network | =4

State

46

Deep Q-Learning

B

. Minibatch of {(s,a,s’,7);}:2,

 Forward pass: |state

Bx D

« Compute loss: (ggu(s, a) — (r+ max Q_og_(sla a)) 2

» Q-Network

J

Hnew

» Q-Values per action

B X NMactions

A §

0o1d

47

Deep Q-Learning

. Minibatch of {(s,a,s’,7);}2,

 Forward pass: |sState|—{ Q-Network » Q-Values per action

B x D B X NMactions

o Compute loss: (Qnew(sv CL) — (7“ T mciax QOld(S,’ CL)))2

\ J \ J

\ A §

Hnew eold

48

Deep Q-Learning

Minibatch of {(s,a,s’,r);}2,

Forward pass:. |State|—] Q-Network » Q-Values per action

B x@)—-H“(\/‘/ XC B X ngctions

SH

)

Compute loss: (Qnew(s,a) — (r +%ax Qol

a

dneuls, (+',0)))
Y "

Hnew 9

Backward pass: / 9],0ss

aenew

49

Deep Q-Learning

MSE Loss := ((Qnew(s,a))— (

* |In practice, for stability:

— Freeze (),;4 and update (),,.,, parameters

— Set @t regular intervals

50

How to gather experience?

{(57 a, 8/7 T)i 1{\;1

This is why RL is hard

How To Gather Experience?

o< qﬁ(ﬂfwﬂ’% j%(

7Tgat her —— Environment Data
; VQ Train
|

Update

< 7-‘- Y
Tgather @

How To Gather Experience?

TTgather)—— Environment g Data {(s,a,s 1)},

N~ —

Train

Update
Tgather

Ttrained

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

- _______00000__]
Exploration Problem

« What should 7Tgather be?

— Greedy? -> Local minimas, no exploration

arg max (s, a; 0)

54

- _______00000__]
Exploration Problem

« What should 7Tgather be?

— Greedy? -> Local minimas, no exploration

arg max (s, a; 0)

* An exploration strategy:

- e-greedy
(

rg max (Q(s,a)) with probability 1 — ¢
a

G = . . .
 random action with probability @

55

Correlated Data Problem

« Samples are correlated => high variance gradients
=> |nefficient learning

e Current Q-network barameters\determines next

training samples => can lead to bad feedback loops

— e.g. if maximizing action is to move left, training samples will
be dominated by samples from left-hand size.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 56

Experience Replay

« Address this problem using experience replay

— A replay buffer stores transitions @T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 57

- 001
Experience Replay

« Address this problem using experience replay
— Arreplay buffer stores transitions (s, a, s, T)

— Continually update replay buffer as game (experience)
episodes are played, older samples discarded

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 58

- 001
Experience Replay

« Address this problem using experience replay
— Arreplay buffer stores transitions (s, a, s, T)

— Continually update replay buffer as game (experience)
episodes are played, older samples discarded

— Train Q-network on random minibatches of transitions from
the replay memory, instead of consecutive samples

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 59

Q-Learning Algorithm

Algorithm 1 Deep O-learning with Experience Replay
Initialize replay memory D to capaciQ _
Initialize action-value function (J with random weights Experience Replay

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

f0r+—1 T Aan

U_-I-,-l. -

With probabilit lect a random action o,/ EPSilon-greedy

otherwise select a; = max, Q*(d(s;),a;0)

Execute action a; in emulator and observe reward r; and image x;

Set 8;.1 = 8;,a4, ;7 and preprocess @71 = d(841)

Store transition (¢ta ag, Ty, ¢t+1) in 'Dv

Sample random minibatch of transitions (¢;,a;, 7, ®;+1) from A//

Set y; = { T for terminal ¢, 1 Q Update
! T + 7y maxXy Q(¢7°-+-1aa/; 0) for non-terminal ¢i+1 —

Perform a gradient descent step on (y; — Q(¢;, a;; 6’))2 according to equation 3

end for
end for

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 60

Case study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs from the game state
Action: Game controls e.g.: Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

61

- 001
Playing Atari Games

« Q-Network architecture

FC-4 (Q-values)
« State: CC050

— Stack of 4 image frames, grayscale
conversion, down-sampling and
cropping to (84 x 84 x 4)

« Last FC layer has #(actions) e
dimensions (predicts Q-values) 11—

|1 -—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 62

Atari Games

Breakout

Pong

SRR

W

AR

R T

httos://www.voutube.pom/watch?v:V1 eYniJORnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

63

https://www.youtube.com/watch?v=V1eYniJ0Rnk

]
Summary

In today’s class, we looked at

 Dynamic Programming
— Q-Value lteration
— Policy Iteration

« Reinforcement Learning (RL)
— The challenges of (deep) learning based methods

— Value-based RL algorithms
* Deep Q-Learning

Next class:
— Policy-based RL algorithms

64

Thanks!

(C) Dhruv Batra 65

