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Topics: 
– Dynamic Programming (Q-Value Iteration)
– Reinforcement Learning (Intro, Q-Learning, DQNs)
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Topics we’ll cover
• Overview of RL

• RL vs other forms of learning
• RL “API”
• Applications

• Framework: Markov Decision Processes (MDP’s)
• Definitions and notations
• Policies and Value Functions
• Solving MDP’s

• Value Iteration (recap)
• Q-Value Iteration (new)
• Policy Iteration

• Reinforcement learning
• Value-based RL (Q-learning, Deep-Q Learning)
• Policy-based RL (Policy gradients)
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Recap
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• Markov Decision Process (MDP)
– Defined by 
: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as 

: discount factor

Recap

5



• Markov Decision Process (MDP)
– Defined by 
: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as 

: discount factor

• Value functions, optimal quantities, bellman equation

• Algorithms for solving MDP’s
– Value Iteration

Recap
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Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from 
state s (and following the policy thereafter):
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Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from 
state s (and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected 
cumulative reward from taking action a in state s (and following the 
policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The optimal value function at state s, and acting optimally thereafter 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The optimal value function at state s, and acting optimally thereafter 

How good is a state-action pair?
The optimal Q-value function at state s and action a, is the expected 
cumulative reward from taking action a in state s and acting optimally 
thereafter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Bellman Optimality Equations
• Relations:
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Bellman Optimality Equations
• Relations:

• Recursive optimality equations:
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Value Iteration (VI)
• Based on the bellman optimality equation
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Value Iteration (VI)
• Based on the bellman optimality equation

• Algorithm
– Initialize values of all states
– While not converged:

• For each state:

– Repeat until convergence (no change in values)
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Time complexity per iteration

Homework



Q-Value Iteration
• Value Iteration Update:

• Q-Value Iteration Update:

20

The algorithm is same as value iteration, 
but it loops over actions as well as states
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• Value Iteration Update:

• Q-Value Iteration Update:
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The algorithm is same as value iteration, 
but it loops over actions as well as states



Policy Iteration
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• Policy iteration: Start with arbitrary      and refine it.

Policy Iteration
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• Policy iteration: Start with arbitrary      and refine it.

• Involves repeating two steps:

– Policy Evaluation: Compute         (similar to VI)

– Policy Refinement: Greedily change actions as per 

Policy Iteration
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• Policy iteration: Start with arbitrary      and refine it.

• Involves repeating two steps:

– Policy Evaluation: Compute         (similar to VI)

– Policy Refinement: Greedily change actions as per 

• Why do policy iteration?
– often converges to        much sooner than 

Policy Iteration
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Summary
• Value Iteration

– Bellman update to state value estimates

• Q-Value Iteration
– Bellman update to (state, action) value estimates

• Policy Iteration
– Policy evaluation + refinement
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Learning Based Methods
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Learning Based Methods
• Typically, we don’t know the environment

– unknown, how actions affect the environment.

– unknown, what/when are the good actions?
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Learning Based Methods
• Typically, we don’t know the environment

– unknown, how actions affect the environment.

– unknown, what/when are the good actions?

• But, we can learn by trial and error.
– Gather experience (data) by performing actions.

– Approximate unknown quantities from data.
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Reinforcement Learning



Learning Based Methods
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Reinforcement Learning

• Old Dynamic Programming Demo
– https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

• RL Demo
– https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html


(Deep) Learning Based Methods
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(Deep) Learning Based Methods
• In addition to not knowing the environment, 

sometimes the state space is too large.
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(Deep) Learning Based Methods
• In addition to not knowing the environment, 

sometimes the state space is too large.

• A value iteration updates takes
– Not scalable to high dimensional states e.g.: RGB images.
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(Deep) Learning Based Methods
• In addition to not knowing the environment, 

sometimes the state space is too large.

• A value iteration updates takes
– Not scalable to high dimensional states e.g.: RGB images.

• Solution: Deep Learning!
– Use deep neural networks to learn low-dimensional 

representations.
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Deep Reinforcement Learning



Reinforcement Learning
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Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating  with a deep 
Q-network
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Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating  with a deep 
Q-network

• Policy-based RL
– Directly approximate optimal policy        with a parametrized 

policy 

• Model-based RL
– Approximate transition function   and reward 

function  
– Plan by looking ahead in the (approx.) future!
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Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating  with a deep 
Q-network

• Policy-based RL
– Directly approximate optimal policy        with a parametrized 

policy 

• Model-based RL
– Approximate transition function   and reward 

function  
– Plan by looking ahead in the (approx.) future!
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Homework!



Value-based Reinforcement Learning

Deep Q-Learning



Deep Q-Learning
• Q-Learning with linear function approximators

– Has some theoretical guarantees
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Deep Q-Learning
• Q-Learning with linear function approximators

– Has some theoretical guarantees

• Deep Q-Learning: Fit a deep Q-Network

– Works well in practice

– Q-Network can take RGB images
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Image Credits: Fei-Fei Li, Justin Johnson, 

Serena Yeung, CS 231n



Deep Q-Learning
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Deep Q-Learning
• Assume we have collected a dataset

• We want a Q-function that satisfies:

• Loss for a single data point:
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Q-Value Bellman Optimality

Target Q-ValuePredicted Q-Value



• Minibatch of 

• Forward pass:
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State Q-Network Q-Values per action

Deep Q-Learning
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• Forward pass:
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State Q-Network Q-Values per action

State

Q-Network

Deep Q-Learning



Deep Q-Learning
• Minibatch of 

• Forward pass:

• Compute loss:
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• Compute loss:
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State Q-Network Q-Values per action



Deep Q-Learning
• Minibatch of 

• Forward pass:

• Compute loss:

• Backward pass:
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State Q-Network Q-Values per action



Deep Q-Learning

• In practice, for stability:

– Freeze and update parameters   

– Set at regular intervals
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How to gather experience?

This is why RL is hard



Environment Data

Update

How To Gather Experience?

Train



Environment Data

Update

How To Gather Experience?

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

Train



Exploration Problem
• What should be? 

– Greedy? -> Local minimas, no exploration
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Exploration Problem
• What should be? 

– Greedy? -> Local minimas, no exploration

• An exploration strategy:

–
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Correlated Data Problem
• Samples are correlated => high variance gradients              

=> inefficient learning 

• Current Q-network parameters determines next 
training samples => can lead to bad feedback loops
– e.g. if maximizing action is to move left, training samples will 

be dominated by samples from left-hand size.

56Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Experience Replay
• Address this problem using experience replay

– A replay buffer stores transitions 

57Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Experience Replay
• Address this problem using experience replay

– A replay buffer stores transitions 

– Continually update replay buffer as game (experience) 
episodes are played, older samples discarded
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Experience Replay
• Address this problem using experience replay

– A replay buffer stores transitions 

– Continually update replay buffer as game (experience) 
episodes are played, older samples discarded

– Train Q-network on random minibatches of transitions from 
the replay memory, instead of consecutive samples

59Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Q-Learning Algorithm
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Epsilon-greedy

Q Update

Experience Replay

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Case study: Playing Atari Games

• Objective: Complete the game with the highest score

• State: Raw pixel inputs from the game state
• Action: Game controls e.g.: Left, Right, Up, Down
• Reward: Score increase/decrease at each time step

61Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Playing Atari Games
• Q-Network architecture

• State:
– Stack of 4 image frames, grayscale 

conversion, down-sampling and 
cropping to (84 x 84 x 4)

• Last FC layer has #(actions) 
dimensions (predicts Q-values)

62Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Atari Games
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Pong
Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Summary
In today’s class, we looked at

• Dynamic Programming
– Q-Value Iteration
– Policy Iteration

• Reinforcement Learning (RL)
– The challenges of (deep) learning based methods
– Value-based RL algorithms

• Deep Q-Learning

Next class:
– Policy-based RL algorithms
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Thanks!


