CS 4803/ 7643: Deep Learning

Topic:
— Reinforcement Learning (RL)
— Overview
— Markov Decision Processes

Viraj Prabhu
Georgia Tech

Topics we’ll cover

* Overview of RL
« RL vs other forms of learning
« RL “API”
* Applications
« Framework: Markov Decision Processes (MDP’s)
« Definitions and notations
» Policies and Value Functions
« Solving MDP’s
« Value lteration
« Policy lteration
« Reinforcement learning
« Value-based RL (Q-learning, Deep-Q Learning)
« Policy-based RL (Policy gradients)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 2

Topics we’ll cover

* Overview of RL
« RL vs other forms of learning
« RL“AP/I”
* Applications
« Framework: Markov Decision Processes (MDP’s)
« Definitions and notations

« Policies and Value Functions This lecture:
* Solving MDP’s — Focus on MDP’s
« Value lteration _ No learning (deep

or otherwise)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 3

Topics we’ll cover

* Overview of RL
« RL vs other forms of learning
« RL“AP/I”
* Applications
« Framework: Markov Decision Processes (MDP’s)
« Definitions and notations

« Policies and Value Functions This lecture:
* Solving MDP’s — Focus on MDP’s
« Value lteration _ No learning (deep

or otherwise)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 4

Supervised Learning

Data: (x, y)

X is data, y is label

Goal: Learn a function to map x ->y — Cat
Examples: Classification,
regression, object detection,

semantic segmentation, image Classification
captioning, etc.

Thisi s CCO 4)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 5

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised Learning

Data: x oo o ee //\

Just data, no labels!

1-d density estimation
Goal: Learn some underlying

hidden structure of the data ZZL)
Examples: Clustering,
dimensionality reduction, feature sl

learning, density estimation, etc. 2-d density estimation

left and right

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 6

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Types of Learning

* Supervised learning
— Learning from a “teacher”
— Training data includes desired outputs

* Unsupervised learning

— Discover structure in data
— Training data does not include desired outputs

« Reinforcement learning
— Learning to act under evaluative feedback (rewards)

-
What is Reinforcement Learning?

» Learning to make good sequences of decisions

Slide Credit: Rich Sutton, Emma Brunskill 8

-
What is Reinforcement Learning?

« Learning to make good sequences of decisions

« Agent-oriented learning—learning by interacting with an
environment to achieve a goal

more and than other kinds of machine
learning

Slide Credit: Rich Sutton, Emma Brunskill 9

-
What is Reinforcement Learning?

« Learning to make good sequences of decisions

« Agent-oriented learning—learning by interacting with an
environment to achieve a goal

more and than other kinds of machine
learning

« Learning by trial and error, with only delayed evaluative feedback
(reward)

the kind of machine learning most like natural learning

learning that can tell for itself when it is right or wrong

Slide Credit: Rich Sutton, Emma Brunskill 10

Computer Science

Engineering Neuroscience

Psychology

Silver 2015]1

Example: Hajime Kimura's RL Robots

Sy
N g ,‘37.'- o .
A =
ey

Before

:

New Robot, Same algorithm 12

RL API

State,
Stimulus,
Situation

Agent
Reward,
Gain, Payoff,
Cost

Environment
(world)

Action,
Response,
Control

e Environment may be unknown, nonlinear, stochastic and complex

e Agent learns a policy mapping states to actions

o Seeking to maximize its cumulative reward in the long run

Slide Credit: Rich Sutton

13

RL API

« At each step t the agent:

action — Executes action a;

observation

p—

Oy

— Receives observation oy
— Receives scalar reward r;
« The environment:

— Receives action a;

— Emits observation oy, 1

— Emits scalar reward ry, ;

Slide Credit: David Silver 14

-
Signature challenges of F

=

» Evaluative feedback (reward)

s Sequentiality, delayed consequences

« Need for trial and error, to explore as well as exploit

« Non-stationarity

« The fleeting nature of time and online data

Slide Credit: Rich Sutton 15

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 16

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 17

Go

= N W & N @9

A BCDETFGH)] KLMNUOPQQRST

<

A BCDETFGH)] KLMNUOPQQRS ST

= N WA U SN O

Objective: Win the game!
State: Position of all pieces

Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

Thisi o 4)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 18

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Topics we’ll cover

* Overview of RL
« RL vs other forms of learning
« RL“AP/I”
* Applications
* Framework: Markov Decision Processes (MDP’s)
« Definitions and notations

« Policies and Value Functions This lecture:
* Solving MDP’s — Focus on MDP’s
« Value lteration _ No learning (deep

or otherwise)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 20

-
Markov Decision Process (MDP)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 21

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 22

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 23

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

S : set of possible states [start state = So optional terminal / absorbing state]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 24

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

S : set of possible states [start state = So optional terminal / absorbing state]
A : set of possible actions

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 25

Markov Decision Process (MDP)

RL operates within a framework called a Markov Decision Process
MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

S : set of possible states [start state = So optional terminal / absorbing state]
A : set of possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 26

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

S : set of possible states [start state = So optional terminal / absorbing state]

A : set of possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple

T(s,a, s"): transition probability distribution, also written as p(s’|s, a)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 27

Markov Decision Process (MDP)

RL operates within a framework called a Markov Decision Process
MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

S : set of possible states [start state = So optional terminal / absorbing state]

A : set of possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple

T(s,a, s"): transition probability distribution, also written as p(s’|s, a)
”Y : discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 28

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,)

S : set of possible states [start state = So optional terminal / absorbing state]

A : set of possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple

T(s,a, s"): transition probability distribution, also written as p(s’|s, a)
”Y : discount factor

- Life is trajectory: ...St,Q¢, ¢4 1, St4+1,A¢1L1,T¢412, St12, ...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 29

-
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: (S, A, R, T,~)

S : set of possible states [start state = So optional terminal / absorbing state]

A : set of possible actions
R(s,a,s’) : distribution of reward given (state, action, next state) tuple

T(s,a, s"): transition probability distribution, also written as p(s’|s, a)
”Y : discount factor

- Life is trajectory: ...St,Q¢, ¢4 1, St4+1,A¢1L1,T¢412, St12, ...

- Markov property: Current state completely characterizes state of the world
- Assumption: Most recent observation is sufficient statistic of history

p(St—H = Slfst = 8t>At = Q¢, Si—1 = St—1,--- So = 80) = p(St+1 = Sl\St = StaAt = at)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 30

-
Markov Decision Process (MDP)

- MDP state projects a search tree

Slide Credit: Emma Brunskill, Byron Boots 31

-
Markov Decision Process (MDP)

- MDP state projects a search tree

- Observability:
- Full: In a fully observable MDP, Ot = St
- Example: Chess
- Partial: In a partially observable MDP, agent constructs its own state,
using history, of beliefs of world state, or an RNN, ...
- Example: Poker

Slide Credit: Emma Brunskill, Byron Boots 32

-
Markov Decision Process (MDP)

- InRL, we don’t have access to || or /R (i.e. the environment)
- Need to actually try actions and states out to learn
- Sometimes, need to model the environment

33

-
Markov Decision Process (MDP)

- InRL, we don’t have access to || or /R (i.e. the environment)
- Need to actually try actions and states out to learn
- Sometimes, need to model the environment

- For today, let's assume we do have access to how the world works

34

-
Markov Decision Process (MDP)

- InRL, we don’t have access to || or /R (i.e. the environment)
- Need to actually try actions and states out to learn
- Sometimes, need to model the environment

- For today, let's assume we do have access to how the world works

- And that our goal is to find an optimal behavior strategy for an agent

35

Canonical Example: Grid World

 Agentlives in a grid

« Walls block the agent’s path
* Actions do not always go as planned 3
* 80% of the time, action North takes the
agent North (if there is no wall)
10% of the time, North takes the agent 7

West; 10% East
« If there is a wall, the agent stays put 1

« State: Agent’s location
 Actions: N, E, S, W
 Rewards: +1 /-1 at absorbing states

Slide credit: Pieter Abbeel

36

Solving MDP’s

37

Solving MDP’s

* Policy

— How should an agent behave?

38

Solving MDP’s

* Policy

— How should an agent behave?

« Value function (Utility)

— How good is each state and/or state-action pair?

39

Policy
« A policy is how the agent acts e.g.

A —— 2

B—— 1

40

Policy

A policy is how the agent acts Bl Siate Action

« Formally, map from states to actions
— Deterministic 7(s) =a
— Stochastic 7 (a|s) = P(4; = a|S; =)

41

- _______00000__]
The optimal policy t*

What's a good policy?

42

- _______00000__]
The optimal policy t*

What's a good policy?

Maximizes current reward? Sum of all future reward?

43

The optimal policy t*

What's a good policy?

Maximizes current reward? Sum of all future reward?

vV 9 &
Discounted future rewards! . e . g

Worth Now Worth Next Step Worth In Two Steps

44

The optimal policy t*

What's a good policy?

Maximizes current reward? Sum of all future reward?

N 7/
Discounted future rewards! . e =
T — (Typically for a
Formally: ©° = arg m?X]E 27 re|m Typioaly fora
| >0

with sq ~p(s0),ar ~ m(:[8¢) , 8t41 ~ p (-] 8¢, ar)

45

The optimal policy *

Slide Credit: Byron Boots, CS 7641 46

]
Discounting

* Prefer rewards now to rewards later
« Helps with convergence
« Alternate interpretation: Contending with possibility of “death”

AY :// 74
Vv 9 &
1 Y il

Worth Now Worth Next Step Worth In Two Steps

Slide Credit: Byron Boots, CS 7641 47

]
Discounting

* Prefer rewards now to rewards later
« Helps with convergence
« Alternate interpretation: Contending with possibility of “death”

\{ Lo
1 Y Qi

Worth Now Worth Next Step Worth In Two Steps

« Given an MDP:

« Actions: East, West, Exit (at first and last position)
« Deterministic transitions
« What is the optimal policy for:
7Y = 1
« =01

Slide credit: Byron Boots, CS 7641 48

[
Value Function

49

[
Value Function

» A value function is a prediction of future reward

50

[
Value Function

» A value function is a prediction of future reward

« State Value Function or simply Value Function
— How good is a state?
— Am | screwed? Am | winning this game?

51

[
Value Function

» A value function is a prediction of future reward

« State Value Function or simply Value Function
— How good is a state?
— Am | screwed? Am | winning this game?

* Action-Value Function or Q-function

— How good is a state action-pair?
— Should | do this now?

52

[
Value Function

Following policy 7T that produces sample trajectories s, ag, ro, Sq, 4y, ---

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 53

[
Value Function

Following policy 7T that produces sample trajectories s, ag, ro, Sq, 4y, ---

How good is a state?
The value function at state s, is the expected cumulative reward from
state s (and following the policy thereafter):

VT(s)=E [Z Yireso = s,w}

t>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 54

[
Value Function

Following policy 7T that produces sample trajectories s, ag, ro, Sq, 4y, ---

How good is a state?
The value function at state s, is the expected cumulative reward from
state s (and following the policy thereafter):

VT(s)=E {Z Yirelsg = s,w}
t>0

How good is a state-action pair?

The Q-value function at state s and action a, is the expected

cumulative reward from taking action a in state s (and following the

policy thereafter):

Q" (s,a) =E Z’yt'rt|80 = S,a90 = a,T

>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 55

- ___0_0___00000000000_]
Optimal Quantities

Given optimal policy 77 that produces sample trajectories So, g, o, S1, A1, ---

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 56

- ___0_0___00000000000_]
Optimal Quantities

Given optimal policy 77 that produces sample trajectories So, g, o, S1, A1, ---

How good is a state?
The optimal value function at state s, and acting optimally thereafter

Vi(s) = E !Z y'rilso = w]

>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 57

- ___0_0___00000000000_]
Optimal Quantities

Given optimal policy 77 that produces sample trajectories So, g, o, S1, A1, ---

How good is a state?
The optimal value function at state s, and acting optimally thereafter

>0

Vi(s) = E !Z y'rilso = w]

How good is a state-action pair?
The optimal Q-value function at state s and action a, is the expected

cumulative reward from taking action a in state s and acting optimally
thereafter

Q" (s,a) =E Zytrﬂso =s,a9 = a,m"
t>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 58

-
Recursive definition of value

Slide credit: Byron Boots, CS 7641 59

-
Recursive definition of value

« Extracting optimal value / policy from Q-values:

V*(s) = max Q*(s,a) 7 (s) =arg max Q*(s,a)

Slide credit: Byron Boots, CS 7641 60

-
Recursive definition of value

« Extracting optimal value / policy from Q-values:
V*(s) =maxQ*(s,a) 7 (s)=arg max Q*(s,a)

« Bellman Equations:

V7(s) = max > p(s']s,a) [r(s,a) +4V* (s')]

S/

Slide credit: Byron Boots, CS 7641 61

-
Recursive definition of value

« Extracting optimal value / policy from Q-values:
V*(s) =maxQ*(s,a) 7 (s)=arg max Q*(s,a)

« Bellman Equations:
V*(s) = max Y p(s'|s,a) [r(s,a) + V" (s)]

Q*(s,a) = p(s'|s,a) [r(s,a) + V" (s)]

S/

Slide credit: Byron Boots, CS 7641 62

Recursive definition of value

« Extracting optimal value / policy from Q-values:
V*(s) =maxQ*(s,a) 7 (s)=arg max Q*(s,a)

« Bellman Equations:

« Characterize optimal values in a way we’ll use over
and over

Slide credit: Byron Boots, CS 7641 63

]
Value lIteration (VI)

« Bellman equations characterize optimal values, VI is
a fixed-point DP solution method to compute it

Slide credit: Byron Boots, CS 7641 64

]
Value lIteration (VI)

« Bellman equations characterize optimal values, VI is
a fixed-point DP solution method to compute it

« Algorithm
— Initialize values of all states V(s) = O
— Update: 11 (5) « mapr Is,a) [r(s,a) + V" ()]

— Repeat until convergence (to v*)

Slide credit: Byron Boots, CS 7641 65

]
Value lIteration (VI)

« Bellman equations characterize optimal values, VI is
a fixed-point DP solution method to compute it

« Algorithm
— Initialize values of all states V(s) = O
— Update: 11 (5) « mapr Is,a) [r(s,a) + V" ()]

— Repeat until convergence (to v*)

« Complexity per iteration (DP): O(|S|?|A|)

Slide credit: Byron Boots, CS 7641 66

]
Value lIteration (VI)

Bellman equations characterize optimal values, VI is
a fixed-point DP solution method to compute it

Algorithm

— Initialize values of all states V(s) = O
— Update: 11 (5) « mapr 'Is,a) [r(s,a) +~yV" (s’)]

— Repeat until convergence (to v*)

Complexity per iteration (DP): O(|S|?|A])

Convergence
— Guaranteed fory < 1
— Sketch: Approximations get refined towards optimal values
— In practice, policy may converge before values do

Slide credit: Byron Boots, CS 7641 67

Value lIteration (VI)

0 0 GHET| 3| O 0 |0.72 0.8

0.1 0.1

ERRE

Viti(s <—maXZp Is,a) [r(s,a) +yV* (s)]

ZP (s'| right, (3,3)) [r((3,3)) + V"' (s)]

:O.9[O.8 140.1-0+0.1-0]

Slide credit: Pieter Abbeel 68

N
Demo

» https://cs.stanford.edu/people/karpathy/reinforcejs/gri
dworld dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

N
Next class

« Solving MDP’s
— Policy lteration

« Reinforcement learning
— Value-based RL

* Q-learning
* Deep Q Learning

Slide Credit: David Silver 70

