CS 4803/ 7643: Deep Learning

Topics:
— (Finish) Convolutional Neural Networks
— Transposed convolutions

— Recurrent Neural Networks (RNNs)]

Dhruv Batra
Georgia Tech



[
Administrativia

« HW1 Challenge Final Analysis

— https://evalai.cloudcv.org/web/challenges/challenge-
page/431/leaderboard/1200

— Qualitative Trends

« HW2 Reminder
— Due: 10/10, 11:55pm

— https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/asse
ts/hw2.pdf
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https://evalai.cloudcv.org/web/challenges/challenge-page/431/leaderboard/1200
https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/assets/hw2.pdf
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Accuracy

Shenhao Jiang AlexNet Simplified submission accuracy
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Plan for Today

 (Finish) Convolutional Neural Networks

— Transposed convolutions
TV

« Recurrent Neural Networks (RNNs)

— A new model class
— Learning: BackProp Through Time (BPTT)

(C) Dhruv Batra 0



Other Computer Vision Tasks

Semantic 2D Object 3D Object
Segmentation Detection Detection

GRASS, CAT, Car
TREE, SKY
> — Object categories + Object categories +
No objects, just pixels 2D bounding boxes 3D bounding boxes

This i s CCO . )

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers \)
to make predictions for pixels all at once! QD'% P(
4/7 4/7 | —
Conv Conv Conv argmax
J : Predictions:
CxHxW Hx W
Convolutions: —_—

DxHxW

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

¢ m Conv Conv

Input: N\

A

id

Conv

A

Id
J

3XxXHxW 4
) Convolutions:
Problem: convolutions at DxHxW

original image resolution will
be very expensive ...

/-

Conv

argmax
=P

Scores: Predictions:
CxHxW HxW

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation |dea: Fully Convolutional

Design network as a bunch of convolutional layers, with
ling and upsampling inside the network!

} Med-res:
. Dox HI /4%

1

!

ER | Low-res:
Rk L n- X W/A—\ — —/
Input: High-res: High-res:

3xHxW D, x H/2 x W/ | D, x H/2 x W/2

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, QPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Predictions:
HxW




Semantic Segmentation Idea: Fully Convolutional

Pooling, strided downsampling and upsampling inside the network! 277

convolution _ _
Med-res: Med-re‘s.K
I D, x H/4 x W/4 D, x H/4 X /4%

Downsampling: Design network as a bunch of convolutional layers, with [ Upsampling:

Low-res:
i D3 x H/4 x W/r\z i _/

Input: High-res: High-res: Predictions:
3XxHXxW D, x H/2 x W/2 Dy x H2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network up

pling: "Unpooling”

' “Bed of Nails”
Neare tN/elghbor 5 | o ed of Nai
1 112 ) 2 | 2 112
—>
314 313|144 314
— 33|44
Input: 2 x 2 Output: 4 x 4 -\ Input: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1|1] 2
0 [ o) o
3(0]4
o|ofo|o
Output: 4 x 4




In-Network upsampling: “,I\/Iax Unpooling”

Max Pooling
Remember which element was max!

Max Unpooling
% Use positions from

¥ :

112 1l6] 3 J{‘,C ( ¢” ~( pooling layer

) \; ,—‘\
31612 | 516 112

> — s —> — —>

112121 7| 8 Rest of tfie network 3|14
713|418 '

Input: 4 x 4 Output: 2 x 2 Input: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

0
0

—
0
0
0

QOutput: 4 x 4




—|Transposed Convolutions

. [Deconvolutio% (bad)

* Upconvolution

* Fractionally strided convolution
« Backward strided convolution

(C) Dhruv Batra 13



Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

{o, )
[ g

T ) h
- =
A I B Dot product T
7 between filter
and input
Input: 4 x 4 N Output: 4 x 4

~C

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

A m%fofﬂ

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x4 Output: 2 x 2
— > \h——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1
//\/ ﬂ‘/():o'L 0, (}
P

> Filter moves 2 pixels in
Dot product the input for every one
between filter pixel in the output

and input

Stride gives ratiq between
movement in input and

output
Input: 4 x 4 Output: 2 x 2 -

N

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

7L°‘(> A Eﬂ

33

Input: 2 x 2 Output: 4 x 4
—_—— ~——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

0)0@ -

W > .
>

Input gives ¢
weight for
filter

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Sum where

3 x 3 transpose convolot,{fwse 2 pad 1 output overlaps
O
K()'J © e | £ 7['&0/ QQN
I(’X \ 6 I

k@ N > | ! E IR Filter moves 2 pixels in
’\ Input gives t 1001, | the output for every one
weight for pixel in the input
filter
Stride gives ratio between
[( movement in output and
input
Input: 2 x 2 ,kw \LQ Output: 4 x 4
9) 0
')(i N7
Ky
| J Nexbe

-
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided
convolution >
-Backward strided

Filter moves 2 pixels in

convolution Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between

movement in output and
input

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transpose Convolution: 1D Example
Output

Input Filter P~
/ ax
J< ay

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2X input

A o

- E

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

/_



Figure Credit: https://medium.com/apache-mxnet/transposed-convolutions-
(C) Dhruv Batra explained-with-ms-excel-52d13030c7e8 25



- ___0_0___00000000000_]
Transposed Convolution

 https://distill.pub/2016/deconv-checkerboard/

(C) Dhruv Batra 26


https://distill.pub/2016/deconv-checkerboard/

In-Network upsampling: “Unpooling” n
El

Eﬁ /\; (;/_/ ()

Nearest Ne 1 N Bed of Nails alolz]o
1/ 2 0{0]|0]O
1]2 Clrlt]z2]2 1) .
3|4 313|144 31| 4 3101410
313|144 0|]0]0]O
Input: 2 x 2 Output: 4 x 4 Input: 3_):2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why this operation?

(C) Dhruv Batra 29



What is deconvolution?

* (Non-blind) Deconvolution

([m\VB \31 A XK
BM(ﬁ - Gawn Y F"W %)
De UgnV —

N\ o limd 2 Giivn 4 6w, bvwk X

(C) Dhruv Batra 30



What is deconvol

* (Non-blind) Decaonvolution

10+

ool

)P
o | |
-] /o
0, y:w*x
0]
é |
A
(
- \‘/“
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—

What does “deconvolution” have to do with “kransposed convolution™?

3 ) [r( . N

L —7
_ L = y
) —

(C) Dhruv Batra 32



e
“transposed convolution” is a convolution!

;/q i

We can express convolution in
terms of a matrix multiplication

rxa= Xa

0
z_y z 0 0 Of]a ay +bz |
0O z_y 2z 0 Of{bf f|ax+by+ecz
0 0 z_y = Offc| |bx+cy+dz
00 0 z_uy z||d | cr+dy |
0

Example: 1D conv, kernel
size=3, stride=1, padding=1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



“transposed convolution” is a convolution!

We can express convolution in
terms of a matrix multiplication

rxa= Xa

x y 2z 0 0 O
O z y 2z 0 O
0 0 z_y =z O
0 0 0 ¢ y =z

O 6 o O

ay + bz
ax + by + cz
bx + cy + dz

cx + dy

Example: 1D conv, kernel
size=3, stride=1, padding=1

E%‘AZ]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolution transpose multiplies by the
transpose of the same matrix:

7+l g=X"Tg

)
o O
o O

7

o O O

L5

o O
.
\

[2 4 «]

ax
ay + bz
az + by + cx
bz + cy + dx
cz + dy
dz




S OO

SO 88

“transposed convolution” is a convolution!

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
rxa= Xa 7+l g=X"Tg
0] x 0 0 O] i ax |
z 0 0 O0f|a [ ay+bz ] y x 0 0] |a ay + bx
y z 0 O0[lb] laz+by+cz z y z 0| [b] |az+by+ecx
x y z 0]|c bx +cy + dz 0 2z y z| |c| |bz4+cy+dr
0 = y z]|d | cx+dy 0 0 2 vyl| |d cz + dy
0, 0 0 0 2z | dz
Example: 1D conv, kernel When stride=1, convolution transpose is
size=3, stride=1, padding=1 just a regular convolution (with different

padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
But not always

We can express convolution in
terms of a matrix multiplication

rxa= Xa

0

a
g;__y,_.zOOO]b_[ ay—|—bz]
0 0 z v z Of|c| |bx+cy+dz

— |d

0

Example: 1D conv, kernel
size=3, stride=2, padding=1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



But not always

We can express convolution in
terms of a matrix multiplication

rxa= Xa

0

a
:ByzOOO]b:[ay—sz]
0 0 z y z O0f|c bx + cy + dz

d

0

Example: 1D conv, kernel
size=3, stride=2, padding=1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolution transpose multiplies by the

transpose of the same matrix:

7+l g=X"Tg

o |
oo own & Iy

When stride>1, convolution transpose is

ocnNe 8 © O

no longer a normal convolution!

41




Plan for Today

 (Finish) Convolutional Neural Networks
— Transposed convolutions /J

.\ =

« Recurrent Neural Networks (RNNs)

— A new model class
— Learning: BackProp Through Time (BPTT)

(C) Dhruv Batra 42



- _______00000__]
New Topic: RNNs

one to one one to many many to one many to many many to many

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION
You GOTTA KNOW WHEN TO QUIT
INFINITE RECURSION

(C) Dhruv Batra YOou GOTTA KNOW WHEN TO QUIT 43




New Words
Eec%nt Neural Networks (RNNs)j

Recursive Neural Networks

— General family; think graphs instead of chains

Types:
— “Vanilla” RNNs (ersﬂ
— Long Short Term Memory (LSTMs)
— Gated Recurrent Units (GRUSs)
—

Algorithms
— BackProp Through Time (BPTT)
— BackProp Through Structure (BPTS)

(C) Dhruv Batra 44



What's wrong with MLPs?

* Problem 1: Can't model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

et ) o

Hidden Layers

(C) Dhruv Batra 45



What's wrong with MLPs?

 Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

* | Problem 2: Pure feed-forward processing
— No “memory”, no feedback

Output Layer
Hidden Layers

Input Layer

(C) Dhruv Batra 46



Why model sequences?

$irl7lC (€

Figure Credit: Carlos Guestrin




]
Why model sequences?

e oo

(C) Dhruv Batra 48



Sequences are everywhere...

MM/Q/ ——l)  FOREIGN MINISTER.

WL sl THE SOUND OF
HE SOUND OF _

=2 ay=0 ag=1 a=3 az;=4 ag=2 a;=H
x = bringen sie bitte das auto zuriick

X\@%/

= please return the car

(C) Dhruv Batra 49



-
Even where you might not expect a sequence...

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence...

« Qutput ordering = sequence

(C) Dhruv Batra Image Credit: Ba et al.; Gregor et al




- _______00000__]
Sequences in Input or Output?

e |t's a spectrum...

one to one

Input: No\
sequence

Output: No
sequence

Example:
“standard”
classification
regression
problems

(C) Dhruv Batra o4




- _______00000__]
Sequences in Input or Output?

« |t's a spectrum...

one to one one to many
hﬁ

Input: No
sequence
Output: No Output: Sequence

Input: No sequence

sequence Example:

Example: Im2Caption

“standard”
classification /
regression
problems

(C) Dhruv Batra -



- _______00000__]
Sequences in Input or Output?

e |t's a spectrum...

one to one one to many

many to one

v
Input: No
se?quence Input: No sequence Input: Sequence
Output: No Output: Sequence Output: No
sequence Example: sequence
Example: Im2Caption Example: sentence
“standard.” classification,
classification / multiple-choice
regression question answering
problems

(C) Dhruv Batra
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- _______00000__]
Sequences in Input or Output?

e |t's a spectrum...

one to one one to many

Input: No
sequence
Output: No Output: Sequence

Input: No sequence

sequence Example:

Example: Im2Caption

“standard”
classification /
regression
problems

(C) Dhruv Batra

many to one

Input: Sequence

Output: No
sequence

Example: sentence
classification,
multiple-choice

question answering

many to many

3,

S

Input: Sequence z T'p I)

Output: Sequence

many to many

T T

N

\

Example: mkachine translation, video classification,
video captioning, open-ended quesfion answering

S7



2 Key ldeas

. !;Parameter Sharing

— in computation graphs = adding gradients

(C) Dhruv Batra 58



Computational Graph




Gradients add at branches
=

=

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



2 Key ldeas

« Parameter Sharing
— in computation graphs = adding gradients

| “Unrolling”
— in computation graphs with parameter sharing

(C) Dhruv Batra 62



How do we model sequences?

* No input

(C) Dhruv Batra 63



How do we model sequences?

« With inputs

)

St—1 St St+1 /?
unfold Jo fo Jo |

: Tt T X
x t—1 t Ut+1 /

(C) Dhruv Batra 64



2 Key ldeas

« Parameter Sharing

-

— in computation graphs = adding gradients

° “Mi—ng”
— in computation graphs with parameter sharingq/

=
| Parameter sharing + Unrolling

— Allows modeling arbitrary sequence-lengths!
— Keeps numbers of parameters in check 5
~— \__—

(C) Dhruv Batra 65



Recurrent Neural Network

-

(><

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

usually want to
predict a vector at
some time steps

o gl

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy|= | fwl(he—1)|24)

N

new state / old stafe iInput vector at
—_— .
some time step

some function
with parameters W

%Jc - ﬁwz( m

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hi — fW(ht—la wt)

—

Notice: the same function and the same set X
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



&R
(Vanilla) Recurrent Neural Network xteﬂ\h

e state consists of a single “hidden” vector h:

&:Wh ht—F[zg

@= @(Q@o

ht — tanh Whhht 1 —|—

\_/

T
£3-

I
Sometimes called a “Vanilla RNN” or an “Elman RNN”" P}ter Prof. J y Igé’u

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

ho > fyy 101 1 fy 1 h2
X1 X2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

)
ho—»fW—>h1—>fW—>h2—>fW—>h3—> —»@T
X1 X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

Re-use the same weight matrix at every time-step

ho—»fW—>h1—>fW—>h2—>fW—>h3—> —» hy
X1 X2 X3
W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to Many

Y1 Y2 Y3 YT

r T T T
h0—>fW —>h1—>fW —>h2—>fW —>h3—>...—>hT
W/X1 Xo X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to Many

Y3

T

)
ﬁﬁ Ll Yo B—
f 1
fW — > h1 fW h2 fW
X4 Xo X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

YT

T




RNN: Computational Gra

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to One

h0—>fW—>h1—>fW—>h2—>fW—>h3—> —» hy
X1 X2 X3
W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: One to Many

Y1 Y2 Y3 YT
r T T T
h0—>fW —>h1—>fW —>h2—>fW —>h3—>...—>hT
/X
W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input
sequence in a single vector

Y1 Y2

£

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



