CS 4803/ 7643: Deep Learning

Topics:
— Visualizing CNNs

Ramprasaath R. Selvaraju
Georgia Tech



Plan for Today

« What do individual neurons look for in images?
— Visualizing filters
— Last layer embeddings
— Visualizing activations
— Maximally activating patches
« How pixels affect model decisions?
— Occlusion maps

— Salient or “important” pixels
* Gradient-based visualizations

« Do CNNs look at same regions as humans?
— How to evaluate visualizations?

« Can we synthesize network-specific images?
— Creating “prototypical” images for a class
— Creating adversarial images
— Deep dream
— Feature inversion
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Plan for Today

 What do individual neurons look for in images?
— Visualizing filters
— Last layer embeddings
— Visualizing activations
— Maximally activating patches

(C) Dhruv Batra 3



What do individual neurons look
for in images?
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What are the intermediate features looking for?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Visualizing filters in first layer
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ResNet-18: ResNet-101: DenseNet-1
64 x3x7 X7 64 x3x7Tx7 64 x3x7Tx7

N

1:

AlexNet:
64 x 3 x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing filters in intermediate layers

Visualize the Waliins. layer 1 weights
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What do neuron activations look like?
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e
Maximally Activating Patches
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Pick a layer and a channel; e.g. conv5 is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What does the last layer learn?
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4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Last Layer: Nearest Neighbors

4096-dim vector

Testimage L2 Nearest neighbors in feature space

Recall: Nearest neighbors
in pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(]
-
|
E | 2
Ff~_ _ 7 17
I £}
E | B
4
c o
L] £
© ©
2

128

13

13

128 Max

, 128
o ElS




Last Layer: Dimensionality Reduction

| E—
—— Tﬁ
| IZQ%
Visualize the “space” of FC7 LI s F
feature vectors by reducing Wikgiaml
dimensionality of vectors from y i ”
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More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Last Layer: Dimensionality Reduction
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Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008 See hlgh-reSO|Ut|0n VerSIOHS at
Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure repyroéuced witgh pertnission. ! t P t t httD//CSStanfOFd ed U/DeOD|e/karDathV/Cnnembed/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://cs.stanford.edu/people/karpathy/cnnembed/

Plan for Today

 How pixels affect decisions from CNNs?
— Occlusion maps

— Salient or “important” pixels
* Gradient-based visualizations
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How pixels affect decisions?
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Visual Explanations

Where does an intelligent system
“look” to make its predictions?

(C) Dhruv Batra 17



e
Which pixels matter: Occlusion Maps

Idea: Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephantimage s
Networks”, ECCV 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

e
Which pixels matter: Occlusion Maps

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

African elephant, Loxodonta africana

Zeiler and Fergus, “Visualizing and Understanding Convolutional ELenh.am.lm.an.e wsm:r.n.u.mum.a.i.n

Faithful ©
Very expensive ®

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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What if our model was linear?




N
What if our model was linear?
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But it's not ®




N
Can we make it linear?

S
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Deep neural network

. hidden layer 1  hidden layer 2 hidden layer 3
input layer

output layer

(C) Dhruv Batra 24
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Taylor Series

18 f(z)~ f(zo) + f'(x0)(z — x0)
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Feature Importance in Deep Models
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Gradient-based visualizations

Backpropagation
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Backprop for ‘cat’  Backprop for ‘dog’

Noisy
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Saliency Maps: Segmentation without supervision

Use GrabCut on
saliency map

[ 4
Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




[
Remember ReLUs?

h't! = ReLU(R') = max{0, h'}

= [[a' > 0]

Or'tt J0 if Al <0
Oh! 1 ifh' >0

—RelU |
— Logistic |

(C) Dhruv Batra 2 s 4 ws o e s 2 31



At = max{0, h'}

= [1' > 05

ot~ gpm >

= [[A' > 0&& > 0]]

(C) Dhruv Batra

Forward pass p!

Backward pass:
backpropagation

Backward pass:
“deconvnet”

Backward pass:
guided
backpropagation




Gradient-based visualizations
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Grad-CAM

Visual Explanations from Deep Networks

via Gradient-based Localization
[ICCV “17]

Ramprasaath Selvaraju Michgel Cogswell Abhishek Das Ramakrishna Vedantam

Devi Parikh Dhruv Batra

GeorglaLU S D TG
TTechno \_,‘

& VirginiaTech

facebook research



e
Grad-CAM Motivation

. Perturb semantic neurons in the image and see how it affects the decision

Lower Higher

. Last convolutional layer forms a best compromise between high-level
semantics and detailed spatial resolution

35
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e
Interesting findings with Grad-CAM

Even simple non-attention based CNN + LSTM models learn to look at
appropriate regions

38



e
Grad-CAM for captioning

e, - it Va

A group of people flying kites on a beach A man is sitting at a table with a pizza

39



O
Grad-CAM for VQA

Guided Backprop Grad-CAM Guided Grad-CAM

VGG-16
lleq siuua ]

What is the person hitting? -
. Even simple non-attention based CNN+LSTM
: models attend to appropriate regions



Grad-CAM Visual Explanations for VQA

What animal is in this picture? Dog

41



Grad-CAM Visual Explanations for VQA

What animal is in this picture? Cat

42



e
Interesting findings with Grad-CAM

. Even simple non-attention based CNN + LSTM models learn to look
at appropriate regions
. Unreasonable predictions often have reasonable explanations

43



e
Analyzing Failure modes with Grad-CAM

| Even unreasonable predictions have
I reasonable explanations

Predicted: Car mirror Predicted: Vine snake

Ground-truth: Volcano Ground-truth: coil 44






Plan for Today

« Do CNNs look at same regions as humans?
— How to evaluate visualizations?

(C) Dhruv Batra 46



Do CNNs look at same regions
as humans?

52
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VQA-HAT (Human ATtention)

Question: How many players are visible in the image?

Answer:

3

53



VQA-HAT (Human ATtention)

What food is on the table? Cake

54



VQA-HAT (Human ATtention)

What animal is she riding? Horse

55



VQA-HAT (Human ATtention)

What number of cats are laying on the bed? 2

56



Are Grad-CAM explanations human-like?

« Correlation with human attention maps
[Das & Agarwal et al. EMNLP’16]

What are they doing?

. |_ __________________ Tt T =T 1
Method ‘l:;mFI;TCorrelatlon i Current models look at regions more :
I . .
1 similar to humans than baselines :
Guided Backpropagation O 122 e e e e e e e e e e e = ==
Guided Grad-CAM 01 36
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Plan for Today

« Can we synthesize network-specific images?
— Creating “prototypical” images for a class
— Creating adversarial images
— Deep dream: amplifying detected features
— Feature inversion

(C) Dhruv Batra o8



Can we synthesize network-
specific images?

(C) Dhruv Batra 59



Generating prototypical images
for a class

60



]
Visualizing CNN features: Gradient Ascent on Pixels

(Guided) backprop: Gradient ascent on pixels:
Find the part of an Generate a synthetic image
image that a neuron that maximally activates a
responds to? neuron

1* = arg max[f(l) +|R(l)

'\

Neuron value Natural image regularizer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing CNN features: Gradient Ascent on Pixels

arg max[S. (D]~ A 1|3

score for class ¢ (before Softmax)

s \dense
1000
048

1. Initialize image to zeros

zero image

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



]
Visualizing CNN features: Gradient Ascent on Pixels

arg max S,(I) ~[A]7]2

Simple regularizer: Penalize L2
norm of generated image

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing CNN features: Gradient Ascent on Pixels

arg max S, (1) [\ 1]

Simple regularizer: Penalize L2
norm of generated image

dumbbell dalmatian

bell pepper lemon husky

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Erhan, et al., 2009 [3]

Introduced core idea. Minimal
regularization.

Szegedy, et al., 2013 [11]

Adversarial examples. Visualizes with
dataset examples.

Mahendran & Vedaldi, 2015 [7]

Introduces total variation regularizer.
Reconstructs input from representation.

Nguyen, et al., 2015 [14]

Explores counterexamples. Introduces
image blurring.

Mordvintsev, et al., 2015 [4]

Introduced jitter & multi-scale. Explored
GMM priors for classes.

@ygard, et al., 2015 [15]

Introduces gradient blurring.
(Also uses jitter.)

Tyka, et al., 2016 [16]

Regularizes with bilateral filters.
(Also uses jitter.)

Mordvintsev, et al., 2016 [17]

Normalizes gradient frequencies.
(Also uses jitter.)

Nguyen, et al., 2016 [18]

Paramaterizes images with GAN
generator.

Nguyen, et al., 2016 [10]

Uses denoising autoencoder prior to
make a generative model.

Weak Regularization avoids
misleading correlations, but is
less connected to real use.

Unregularized Frequency

Penalization

Transformation
Robustness

Strong Regularization gives
more realistic examples at risk
of misleading correlations.

Learned Dataset
Prior Examples




Can neural networks be fooled?

67
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Fooling Images / Adversarial Examples

(1)Start from an arbitrary image

(2)Pick an arbitrary class

(3)Modify the image to maximize the class
(4)Repeat until network is fooled

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fooling Images / Adversarial Examples

African elephant koala Difference 10x Difference

iPod Difference 10x Difference

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
Forward: compute activations at chosen layer
Set gradient of chosen layer equal to its activation

Backward: Compute gradient on image
Update image

BN =

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

Networks”, Google Research Blog. Images are licensed under CC-BY
4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

- 001
DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

& »J
@
L |27

D

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer Equivalent to:

2. Set gradient of chosen layer equal to its activation 1* = arg max, 3, fi(l)2
3. Backward: Compute gradient on image

4. Update image

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

Networks”, Google Research Blog. Images are licensed under CC-BY
4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://commons.wikimedia.org/wiki/File:Appearance_of_sky_for_weather_forecast,_Dhaka,_Bangladesh.JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

"The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

Given the feature vector can you
reconstruct the image?

75



Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector
- “looks natural” (image prior regularization)

—_ » Given feature vector
: argmin £(®(x), Py) + AR(x)

XERHXVVXC ———

U(®(x), Do) = [|P(x) — Dol

» Features of new image

B

Rys(x) = Z ((mi,jﬂ - fl?ij)2 + (Tit1, — fl?z'j)z)

2
i.g \ Total Variation regularizer

(encourages spatial smoothness)
Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Feature Inversion

Reconstructing from different layers of VGG-16

_3

-~

relu4d relub_1 relub_3

a0 -

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



