
Queue-Proportional Sampling: A Better Approach to
Crossbar Scheduling for Input-Queued Switches

Long Gong† Paul Tune‡ Liang Liu† Sen Yang† Jun (Jim) Xu†
Georgia Institute of Technology† School of Mathematical Sciences, University of Adelaide‡

{gonglong,lliu315,sen.yang}@gatech.edu paul.tune@adelaide.edu.au jx@cc.gatech.edu

ABSTRACT
Most present day switching systems, in Internet routers and
data-center switches, employ a single input-queued cross-
bar to interconnect input ports with output ports. Such
switches need to compute a matching, between input and
output ports, for each switching cycle (time slot). The main
challenge in designing such matching algorithms is to deal
with the unfortunate tradeoff between the quality of the
computed matching and the computational complexity of
the algorithm. In this paper, we propose a general approach
that can significantly boost the performance of both Serena
and iSLIP, yet incurs only O(1) additional computational
complexity at each input/output port. Our approach is a
novel proposing strategy, called Queue-Proportional Sam-
pling (QPS), that generates an excellent starter matching.
We show, through rigorous simulations, that when starting
with this starter matching, iSLIP and Serena can output
much better final matching decisions, as measured by the
resulting throughput and delay performance, than they oth-
erwise can.

Keywords
Crossbar scheduling; input-queued switch; matching; queue-
proportional sampling

1. INTRODUCTION
Most present day switching systems, in Internet routers

and data-center switches, employ a single crossbar to inter-
connect input ports with output ports. A generic input-
queued switch is shown in Figure 1, with N input and N
output ports interconnected by a crossbar. Each input port
has N Virtual Output Queues (VOQs). A VOQ j at in-
put port i serves as a buffer for packets going from input
port i to output port j. The use of VOQs solves the Head-
of-Line (HOL) blocking issue [13], which severely limits the
throughput of the switch system.

In an input-queued switch, each input port can be con-
nected to only one output port, and vice versa, in each
switching cycle, or time slot. Hence, input-queued switches

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Input N

VOQ 1

VOQ N

Input 1

VOQ 1

VOQ N
Crossbar

Output 1

Output N

Figure 1: Generic input-queued crossbar switch.

need to compute, per time slot, a one-to-one matching be-
tween input and output ports. With the relentless growth
in the volume of network traffic across the Internet and in
data-centers, switches capable of connecting a large num-
ber of ports and operating at very high port/link speeds are
badly needed. The primary research challenge when design-
ing such large single-crossbar switch architectures is to de-
velop algorithms that can compute “high quality” matchings
– i.e., those that result in high switch throughput (ideally
100%) and low queueing delays for packets – at high speeds.

Unfortunately, there appears to be a tradeoff between the
quality of a matching and the time needed to compute it
(i.e., computational complexity). Maximum Weight Match-
ing (MWM), with a suitable weight measure, is known to
produce (empirically) optimal matchings in terms of queue-
ing delay for a large variety of traffic patterns [34]. Each
matching decision however takes O(N3) time to compute [7].
Researchers have been searching for alternatives that have
complexity much lower than O(N3), but have performance
(mostly in terms of delay) close enough to MWM.

Serena [10] is one such algorithm. It outputs excellent
matching decisions resulting in 100% switch throughput and
queueing delay close to that of MWM. Each matching deci-
sion takes O(N) time to compute. Another example is iS-
LIP [17], a distributed iterative algorithm where input and
output ports compute a matching in parallel through mul-
tiple iterations of message exchanges. iSLIP has a per-port
computational complexity of O(log2N) (O(logN) iterations
that each has O(logN) circuit depth) that is lower than Ser-
ena’s overall complexity of O(N). However, iSLIP computes
a different type of matching called a Maximum-Size Match-
ing (MSM), which is of lower quality than MWM. Hence iS-

1

10.1145/1235

LIP cannot achieve 100% throughput except under uniform
traffic, and has much longer queueing delays than Serena
under heavy nonuniform traffic.

1.1 Starter Matching and Its Importance
In Serena, a starter (partial) matching is first generated,

via a proposing process, then populated into a full matching,
and finally refined into the final matching. The proposing
process works as follows. Each input port “proposes” to an
output port that it would like to match with by sending the
output port a message containing the length of the corre-
sponding VOQ. An output port, upon receiving proposals
from one or more input ports, accepts the one whose corre-
sponding VOQ is the longest.

Serena’s proposing strategy is the so-called arrival graph:
each input port proposes to an output port corresponding
to the destination of a packet that arrived in the previous
time slot, if applicable. This is a sensible strategy because,
in the steady state, an output port is proposed to with a
probability proportional to the packet arrival rate of the
corresponding VOQ.

However, this proposing strategy has a subtle shortcom-
ing: it is oblivious to the current lengths of N VOQs at
each input port, so not enough attention is devoted to re-
ducing the lengths of longest VOQs. For example, a VOQ
with many packets but without recent arrivals, which could
happen under bursty traffic (see §6), will mostly be denied
service until it has new arrivals.

1.2 Queue-Proportional Sampling (QPS)
In this paper, we propose a general approach that can sig-

nificantly boost the performance of both Serena and iSLIP,
yet incurs only O(1) additional computational complexity at
each input/output port. Our approach is a novel proposing
strategy, called Queue-Proportional Sampling (QPS), that
generates an excellent starter matching, better than the ar-
rival graph used by Serena. Scheduling algorithms that start
from“scratch”(i.e., an empty matching), such as iSLIP, may
also benefit significantly from QPS, by instead starting from
a QPS-generated starter matching.

Our proposing strategy, QPS, at any input port, is ex-
tremely simple to state: the input port proposes to an out-
put port with a probability proportional to the length of the
corresponding VOQ. QPS’s name comes from the fact that
the output port proposed to by any input port is sampled,
out of all N output ports, using the queue-proportional dis-
tribution at the input port. We note that, although this
general approach – of serving queues at rates/probabilities
proportional to their lengths – to resource allocation is clas-
sical [8], QPS is a novel application of this approach to cross-
bar scheduling.

We will show in §4 that QPS is also extremely cheap to
execute: we developed an O(1) data structure and algorithm
for generating such a sample at each input port. This may
be surprising to readers, since even to “read” the lengths
of all N VOQs at an input port takes O(N) time. Due
to its O(1) (per port) computational complexity, any QPS-
augmented algorithm has the same asymptotic complexity
as the original algorithm.

In this work, we consider two QPS-augmented algorithms:
QPS-iSLIP and QPS-Serena, which combine QPS with iS-
LIP [17] and Serena [10] respectively. Both QPS-augmented
algorithms are shown to outperform the original algorithms,

in both throughput and delay, under various load conditions
and traffic patterns, by a wide margin in §6. As the QPS
approach is very general, it can be used to augment other
low-complexity switching algorithms in the future.

We make the following three major contributions in this
work. First, we propose QPS, a simple yet effective approach
to crossbar scheduling, and use it to augment both iSLIP and
Serena. Second, we propose a data structure that carries out
each QPS operation with only O(1) computation per port.
Third, for proving the stability of QPS-Serena, we derive a
new and stronger theorem for proving the stability of a large
family of switching algorithms.

The rest of this paper is organized as follows. In §2, we
provide some background on input-queued crossbar schedul-
ing. In §3, we describe the QPS proposing strategy and
two QPS-augmented crossbar scheduling algorithms, namely
QPS-iSLIP and QPS-Serena. In §4, we show how to carry
out each QPS operation with only O(1) computation. In §5,
we prove that QPS-Serena can achieve 100% throughput.
In §6, we evaluate the throughput and delay performance of
QPS-iSLIP and QPS-Serena against other competing algo-
rithms. In §7, we describe related work before concluding
the paper in §8.

2. BACKGROUND
In this section, we provide an overview of the input-queued

crossbar switch architecture and formulate the research prob-
lem of crossbar scheduling.

2.1 Input-Queued Crossbar Architecture
In an input-queued switch, packets arriving at an input

port are queued first in their respective VOQs before be-
ing switched to their respective output ports by the cross-
bar. In this work, we adopt the standard assumption that
all incoming variable-size packets are segmented into fixed-
size packets (sometimes referred to as cells), which are then
reassembled when leaving the switch. Hence we consider
the switching of only fixed-size packets in the sequel, and
each such fixed-size packet takes exactly one time slot to
transmit. We also make the following standard homogene-
ity assumption that every input or output link/port has the
same maximum transmission rate (normalized to 1), which
is equal to that of a transmission line or crosspoint in the
crossbar (also normalized to 1).

An N × N crossbar is generally modeled as a weighted
complete bipartite graph, with the N input ports and the
N output ports represented as the two disjoint vertex sets
respectively. An edge between an input port i and an output
port j corresponds to the VOQ j at the input port i, and
its weight is the queue length (i.e., the number of packets
buffered) of the VOQ. A valid schedule, or matching, is a set
of edges between the N input ports and the N output ports,
in which no two distinct edges share a vertex. Since there
can be at most N edges in any such matching, the crossbar
can switch at most N packets to their respectively output
ports during each time slot. Each matching can also be
represented as an N×N sub-permutation matrix1 S =

(
sij
)
,

in which sij = 1 if and only if the input port i is matched
with the output port j.

1An N ×N sub-permutation matrix is an N ×N 0-1 matrix
where at most one element in each row or column can take
value 1.

2

2.2 Performance Metrics
The research objective of crossbar scheduling is to design

scheduling algorithms that select a good matching, as mea-
sured by certain performance metrics, in each time slot, with
a reasonable amount of computation. Typically, schedul-
ing algorithms are evaluated on three performance metrics:
throughput, delay, and complexity.

Throughput: Normalized throughput is defined as the av-
erage number of packets that exit an output port during
each time slot. It is a value between 0 and 1 (i.e., 100%).
Throughout this work, we mean normalized throughput when-
ever we use the word “throughput”.

We say a switch, employing a certain crossbar scheduling
algorithm, is stable [19] – under a certain workload – if its to-
tal queue (VOQ) length ‖Q(t)‖1 satisfies sup

0≤t<∞
E
[
‖Q(t)‖1

]
<

∞. A crossbar scheduling algorithm is said to achieve 100%
throughput, if the switch is stable under any traffic arrival
process that is admissible (defined next) and satisfies certain
other mild conditions (see §5.1). For example, Serena can
achieve 100% throughput under any such admissible arrival
process, whereas iSLIP generally cannot.

Delay: We define delay as the number of time slots elapsed
since the arrival of a packet to its eventual departure from
the switch. An ideal scheduling algorithm has 100% through-
put and low delay. Achieving 100% throughput is relatively
easier than achieving low delay. For instance, in TASS [33],
100% throughput is achieved, at the cost of high delays,
using a simple randomized adaptive algorithm that we will
describe in §5.2.

Complexity: Another criterion for evaluating a scheduling
algorithm is the time complexity of computating a matching.
As mentioned earlier, folklore suggests a tradeoff between
the quality of matching and the computational complexity.
A key contribution of our QPS approach is to strike better
performance-complexity tradeoffs than existing approaches
such as iSLIP and Serena.

2.3 Admissible Traffic Patterns
Let λij be the normalized (to the percentage of the rate

of an input/output link) mean arrival rate of packets to the
jth VOQ (i.e., those destined for output port j) at input
port i. Then the traffic pattern, represented by an N × N
traffic matrix Λ = {λij}N×N , is called admissible if

λ
(in)
i ,

∑
j

λij < 1 ∀1 ≤ i ≤ N (1)

λ
(out)
j ,

∑
i

λij < 1 ∀1 ≤ j ≤ N (2)

Equivalently, we say Λ is admissible, if and only if ρ < 1,
where ρ, defined as

ρ , max
{

max
1≤i≤N

{λ(in)
i }, max

1≤j≤N
{λ(out)

j }
}

(3)

is the maximum normalized load imposed on any input or
output port. Clearly, ρ < 1 is a necessary condition for any
crossbar scheduling algorithm to ensure the stability of a
switch.

Now we state a well-known fact that has been used, usu-
ally without a proof, in almost every switch stability proof
in the literature.

Fact 1. For each N × N admissible traffic matrix Λ,
whose maximum per input/output load is ρ (defined in (3)),
there exist N×N matching (sub-permutation) matrices Mn,
n = 1, 2, . . . ,K such that

Λ =

K∑
n=1

αnMn (4)

where K ≤ N2 − 2N + 2, αn > 0 and
∑K
n=1 αn ≤ ρ.

This fact follows from the fact that Λ/ρ is a sub-stochastic
matrix, which can be expressed as a linear combination
of sub-permutation matrices with positive coefficients sum-
ming up to a value no larger than 1, known as the Birkhoff–
von Neumann decomposition [6, 21,23].

3. QUEUE-PROPORTIONAL SAMPLING
In this section, we first describe the QPS proposing strat-

egy in details. Then we explain how to augment iSLIP and
Serena using QPS. We next compare QPS with ShakeUp [11],
another “add-on” technique that can be used to augment it-
erative switching algorithms such as iSLIP and iLQF [16]. In
Appendix A, we discuss a QPS variant called FQPS, which
samples a VOQ with a probability proportional to a function
of the VOQ length.

3.1 The QPS Proposing Strategy
In all QPS-augmented crossbar scheduling algorithms, the

first step is for input ports and output ports to perform one
iteration of message exchanges to generate a starter match-
ing. This iteration consists of two phases, namely, a QPS-
proposing phase and an accepting phase.

Proposing phase. In this phase, each input port proposes
to exactly one output port – decided by the QPS strategy –
unless it has no packet to transmit. Procedure 1 shows the
pseudocode of the QPS proposing strategy at an input port
1; that at any other input port is identical. Denote as m1,
m2, · · · , mN the respective lengths of N VOQs at input
port 1, and as m their total (i.e., m ,

∑N
k=1mk). Input

port 1 simply samples an output port j with probability
mj

m
(line 2), i.e., proportional to the length of the corresponding
VOQ; it then proposes the value mj to output port j (line 3).

Accepting phase. We adopt the same accepting strategy
as in Serena: “Longest VOQ first”. The pseudocode of the
accepting phase, at output port 1, is shown in Procedure 2;
that at any other output port is identical. The action of out-
put port 1 depends on the number of proposals it receives.
If it receives exactly one proposal from an input port, it will
accept the proposal and (tentatively) match with the input
port. However, if it receives proposals from multiple in-
put ports, it will accept the proposal accompanied with the
highest VOQ length, with ties broken uniformly at random.

The computational complexity of this accepting strategy
is O(1) in practice although in theory an output port could
receive up to N proposals and have to compare their accom-
panying VOQ lengths. This is because the probability for
an output port to receive proposals from more than several
(say 5) input ports is tiny, and even if this rare event hap-
pens, the output port can ignore/drop all proposals beyond
the first several (say 5) without affecting the quality of the
final matching much. In our evaluations, we indeed set this
threshold to 5.

3

1 Procedure QPS-Propose()
2 Sample an output port j with probability

mj

m
3 Send mj (length of VOQ j) to output port j

Procedure 1: Proposing phase at input port 1.

1 Procedure Accept()
2 if one or more proposals are received then
3 Accept the one with largest VOQ length

Procedure 2: Accepting phase at output port 1.

We have also considered and experimented with another
accepting strategy: accepting each competing proposal with
a probability proportional to the length of the corresponding
VOQ, which we refer to as Proportional Accepting (PA). The
advantage of PA over“longest VOQ first”above is that when
the switch is severely overloaded (i.e., with offered load >
100%), PA could provide better fairness to competing input
ports and help prevent certain starvation situations. For
example, consider the pathological scenario in which, for a
fairly long period of time (say 1 minute), packets destined for
an output j would arrive at input ports i1 and i2 with rates 1
and 0.1 respectively. Under “longest VOQ first”, the output
port j would keep accepting proposals from input port i1
(because its VOQ length is longer) and hence starve input
port i2, whereas under PA, the output port j would accept
proposals from input port i2 with roughly 1/11 probability.

However, we prefer “longest VOQ first” over PA because,
as we will show in Appendix E.3, the former generally has
better average delay performance, albeit slightly, and guar-
antees almost the same fairness and lack of starvation, un-
der all admissible workloads. We believe the primary mis-
sion of a crossbar scheduling algorithm is to deliver excellent
performance under admissible workloads; such “grace under
fire” (proportional fairness and lack of starvation even when
severely overloaded) is a secondary consideration and can
be better achieved through other “knobs or levers” orthogo-
nal to switching such as congestion control, packet schedul-
ing, or traffic policing/shaping. This said, we prove in Ap-
pendix D that QPS-Serena with PA can also achieve 100%
throughput just like QPS-Serena with “longest VOQ first”,
in case the former is preferred in certain application scenar-
ios.

Message Complexity. The message complexity of each
“propose-accept” iteration is O(1) messages per input or out-
put port, because each input/output port transmits no more
than one message during the propose/accept phase.

3.2 Augmenting iSLIP and Serena
Now we describe, in QPS-iSLIP and QPS-Serena respec-

tively, how iSLIP and Serena are augmented using QPS.
We also describe iLQF [16] in this section, because it is
closely related to iSLIP, and its performance will be com-
pared against QPS-iSLIP in §6.

3.2.1 iSLIP, QPS-iSLIP, and iLQF
The iSLIP algorithm computes an approximate MSM (Max-

imum Size Matching) via multiple iterations of message ex-
changes between the input and output ports. Each iteration
consists of three stages: request, grant, and accept. In the

request stage, each input port sends requests to all output
ports whose corresponding VOQs are not empty. In the
grant stage, each output port, upon receiving requests from
multiple input ports, grants to one in a round-robin order.
This round-robin order is enforced through a grant pointer
that records the identifier of the input port – to whom a
grant was accepted in the first iteration – during the most
recent time slot when this situation occurred. Finally, in the
accept stage, each input port, upon receiving accepts from
multiple output ports, accepts one in a round-robin order,
enforced similarly through an accept pointer.

QPS-iSLIP can be viewed as adding a “0th iteration” to
iSLIP. In this 0th iteration, QPS is executed to generate
a starter matching. Then iSLIP is called to match only
those input/output ports not matched in the 0th iteration,
through multiple request-grant-accept iterations. We spec-
ify that in QPS-iSLIP, it is those ports matched in the 1st

iteration (by iSLIP), not those matched in the 0th iteration
(by QPS), who update the values of their grant or accept
pointers. The rationale is that the aforementioned objective
of enforcing the round-robin order is not accomplished in
the QPS iteration.

iLQF [16] operates in the same way as iSLIP, except that
(1) it is aware of the edge weights (i.e., lengths of VOQs),
and (2) it favors the request or grants with the heaviest
weight (i.e., greedy) in the grant or accept stage respec-
tively. Hence, iLQF can be viewed as a greedy approach to
approximately compute the MWM. iLQF generally performs
better than iSLIP, but has a higher computational complex-
ity of O(N) per port (compared to O(log2N) for iSLIP).
We show in §6 that our QPS-iSLIP algorithm has a similar
performance as iLQF, but the same per-port complexity as
iSLIP.

3.2.2 Serena and QPS-Serena
As described earlier, Serena derives a starter matching

from the arrival graph. This starter matching, which is typ-
ically partial, is then populated into a full matching by pair-
ing the unmatched nodes in the bipartite graph uniformly at
random. Serena then combines, using a MERGE procedure,
this full matching with the matching used in the previous
time slot, to arrive at a new matching that is at least as
heavy as both matchings. This new matching will then be
used for the current time slot. We omit the details of this
MERGE procedure, since it is not related to how QPS aug-
ments Serena. Finally, to precisely specify QPS-Serena, it
suffices to note that the only difference between QPS-Serena
and Serena is that QPS-Serena uses a QPS-generated starter
matching, instead of one derived from the arrival graph.

3.3 QPS vs. ShakeUp
As we have shown, QPS is used mainly as an “add-on”

to certain switching algorithms. In the literature, the only
other add-on technique that we are aware of is ShakeUp [11].
ShakeUp is a set of randomized algorithms designed to boost
the performance of certain iterative switching algorithms,
such as iSLIP and iLQF. It does so by preventing these it-
erative algorithms from getting stuck at (locally) maximal
matchings during their iterative executions. ShakeUp is typ-
ically used as follows: a ShakeUp-augmented switching al-
gorithm alternates between an iteration of the underlying
switching algorithm (e.g., iSLIP) and a ShakeUp iteration.

There are two types of ShakeUp algorithms: unweighted

4

and weighted [11]. The unweighted ShakeUp is designed to
augment switching algorithms that do not consider VOQ
lengths in their decision-making, such as Parallel Iterative
Matching (PIM) [2] and iSLIP [17]. In each unweighed
ShakeUp iteration, unmatched input ports are first permuted
in a random order. From this (random) order, each un-
matched input port sends a request to an output port uni-
formly at random (i.e., unweighted) chosen from the set of
output ports to which the corresponding VOQs are nonempty.
An output port, upon receiving such a request, must now
pair with this input port, even if it was already paired with
another input port. If an output port receives multiple re-
quests during the same ShakeUp iteration, it selects one of
them uniformly at random. The iSLIP scheme augmented
this way was called SLIP-SHAKE in [11]. In §6, we will
compare the its performance (renamed to iSLIP-ShakeUp)
with that of QPS-iSLIP.

The weighted ShakeUp [11] is designed to augment switch-
ing algorithms that incorporate VOQ lengths in their decision-
making, such as iLQF [16]. In each weighed ShakeUp iter-
ation, each unmatched input port, one after another in the
above-mentioned randomly order, sends a request to an out-
put port with a probability proportional to the length of the
corresponding VOQ.

Admittedly, weighted ShakeUp’s proposing strategy sounds
very similar to our QPS strategy. However, there are four
key differences: how they are used, how widely applicable
they are, their intended purpose, and how they are imple-
mented. First, in ShakeUp, only unmatched input ports
execute this strategy to “shake up” an existing suboptimal
matching, whereas in QPS, all input ports execute the strat-
egy at the very beginning to generate a starter matching for
other switching algorithms to build on. In a sense, ShakeUp
is designed for“post-processing”whereas QPS is designed for
“pre-processing”. Second, while our QPS scheme can easily
augment a non-iterative algorithm such as Serena, it is not
known whether ShakeUp, weighted or unweighted, can do
the same. Third, it was never suggested in [11] that this
(weighted) strategy might be suitable for “weight-oblivious”
switching algorithms such as PIM or iSLIP; only the un-
weighed ShakeUp was “prescribed” for PIM or iSLIP. Last,
unlike in our work, there was no mention of how the queue-
proportional proposing strategy could be carried out in O(1)
time (per port), and no data structure was proposed for do-
ing so [11].

4. QPS IMPLEMENTATION
In this section, we describe the data structure and al-

gorithm that allows an input port to sample a VOQ in the
queue-proportional manner (i.e., line 2 of Procedure 1), and,
if needed, to remove the Head-of-Line (HOL) packet of any
VOQ (for receiving switching service), both with O(1) (per
port) computational complexity. This data structure is ex-
tremely simple, although we have so far not been able to
find anything sufficiently similar in the literature.

The memory overhead of the QPS data structure is no
more than 20 bytes per packet; the detailed “accounting” is
shown in Appendix B. Assuming an average packet size of
500 bytes, the amount of memory consumed by the QPS
data structure is no more than 4% of what is needed for
storing the actual packets. This is a modest space overhead
ratio to pay, for the significant improvements in switching
performance.

4.1 Overview of the Sampling Algorithm
We first provide a high-level overview of the sampling algo-

rithm. It consists of two steps. In the first step, we sample
a packet, out of all packets currently queued at the input
port, uniformly at random. Specifically, if there are a to-
tal of m packets across all N VOQs at the input port, each
packet is sampled with probability 1/m. With such uniform
sampling, the jth VOQ, which has length mj , will have one
of packets sampled with probability mj/m. This is precisely
the QPS behavior called for in line 2 of Procedure 1.

Suppose a packet is thus sampled. A part of the second
step is to find out which VOQ this packet belongs to so that
the input port can propose to the corresponding output port
with its queue length (see line 3 of Procedure 1). However,
more effort is still required. Since all switching algorithms
serve packets in a VOQ strictly in the FIFO order, if this
proposal is successful (i.e., accepted by the output port),
and the input and output port pair is eventually a part of
the final matching, the HOL packet of this VOQ, which may
or may not be the sampled packet, needs to be located and
serviced. Hence, the other part of the second step is to locate
the HOL packet of this VOQ.

Before going into the details, we list two other basic op-
erations that this data structure needs to also support. The
first operation is that any new incoming packet must be
recorded in the data structure so that it is logically “added
to the end of the VOQ that it belongs to”. The second op-
eration is that, when the scheduling algorithm eventually
decides to pair the input port with a different output port
than was proposed to, which could happen due to either the
proposal being rejected or the initially accepted proposal
being overridden by the scheduling algorithm (e.g., during
Serena’s MERGE operation in the case of QPS-Serena), the
HOL packet of the (new) corresponding VOQ needs to be lo-
cated and removed for receiving the switching service. Both
operations can be supported with O(1) complexity, as will
be shown next.

4.2 The Detailed Data Structure
We show that the two steps of the QPS proposing strategy

can be performed in O(1) time, at any input port, via a main
and an auxiliary data structures, that are the same for all
input ports. Figure 2(a) and (b) present the data structures,
at a single input port, before and after the HOL packet of its
jth VOQ is chosen for (switching) service. The top half and
bottom half of the figures show the main and the auxiliary
data structures respectively.

The main data structure. The main data structure is
an array of N records, corresponding to the N VOQs at the
input port. Each record j (i.e., array entry j) is associated
with a linked list, which corresponds to (pointers to) packets
queued at a VOQ in the order they arrived, starting with
the HOL packet. Each node in the linked list contains two
pointers encoded as “〈letter〉” (e.g., A); one points to the ac-
tual packet (e.g., packet A) in the packet buffer (not shown
in the figure) and the other to the corresponding entry (e.g.,
entry A) in the auxiliary data structure, which we refer to
as a back pointer.

For simplicity, Figure 2 shows only record j (correspond-
ing to VOQ j). Each record contains a head and a tail
pointers that point to the head node and the tail node of the
linked list respectively. The head pointer is needed for locat-

5

...
mj

...
j

B j E j · · · A j · · · F j /

G • • • B • • • A • • • C D

head

tail

sampled packet

HOL packet

m

(a) Before scheduling

...
mj

...
j

E j · · · A j · · · F j /

G • • • D • • • A • • • C

head tail

m− 1

(b) After scheduling

Figure 2: Illustrating the action of the QPS data structures on a single input port.

ing and for removing the head node (i.e., the HOL packet)
in O(1) time; it is also needed for locating and replacing the
array entry that corresponds to the HOL packet in the aux-
iliary data structure. The tail pointer is needed for inserting
a newly arrived packet to the “end of the VOQ” (i.e., the
first basic operation) in O(1) time.

The auxiliary data structure. The bottom half of Fig-
ure 2 shows the auxiliary data structure used for performing
the sampling. Suppose there are a total of m packets queued
across all N VOQs at the input port. The auxiliary data
structure is simply an array of m entries, each of which is
a pointer that points to a distinct (packet) node (e.g., node
A) in one of the N linked lists in the main data structure.

Despite arrivals and departures of packets over time, the
auxiliary data structure always occupies a contiguous block
of array entries, the boundaries of which are identified by a
head and a tail pointer as shown in the bottom half of Fig-
ure 2. This contiguity allows any array entry (packet) to be
sampled uniformly at random in O(1) time, an aforemen-
tioned key step of QPS. Hence this contiguity needs to be
maintained in the event of packet arrivals and departures.
The case of a packet arrival is easier: the entry corresponds
to the new packet is inserted after the current tail position,
and the tail pointer updated. The case of a packet depar-
ture is only slightly trickier: if the departing packet leaves a
“hole” in the block, the tail entry is moved to fill this hole,
and the tail pointer updated.

In the case of a packet departure, the (packet) node in
the main data structure that is pointed to by the former tail
entry (now moved to “fill the hole”) needs to have its back
pointer updated to the offset of the former hole, where the
former tail entry now is. This is clearly an O(1) procedure.
A similar procedure can be used to support the second basic
operation in O(1) time.

An illustrative example. To see how the main and the
auxiliary data structures work together to facilitate QPS,
consider the example shown in Figure 2. In Figure 2(a),
the packet A was sampled out of m packets in the auxiliary
data structure. However, it is not the HOL packet, so its
destination (output) port (i.e., VOQ identifier) is checked,
which turns out to be j. By accessing the jth record in
the main data structure, which corresponds to VOQ j, the
HOL packet is packet B. Now, the input port proposes to
match with output port j. In Figure 2(b), if the proposal

is accepted by, and the input port is eventually matched to,
output port j, packet B will depart (for output port j) in
the current time slot. The head pointer in the jth record
of the main data structure is updated to (point to) E, the
new HOL packet. These operations, i.e., the search for the
HOL packet, and the updates to both data structures, all
take O(1) time.

5. STABILITY PROOF OF QPS-SERENA
In this section, we prove that the QPS-Serena algorithm

is stable (i.e., can achieve 100% throughput) under any ar-
rival processes that are admissible and satisfy certain mild
conditions. In §5.1, we introduce some background informa-
tion and notations that we need in the stability proofs. In
§5.2, we describe a theorem used in [33] to prove the stabil-
ity of the TASS algorithm. Unfortunately, this theorem is
not applicable to QPS-Serena, because QPS-Serena in gen-
eral does not satisfy the so-called Property P, a condition
required by the theorem. In §5.3, we state a stronger theo-
rem that requires only a weaker condition than Property P,
which is satisfied by QPS-Serena.

5.1 Background and Notations
We first define three N×N matrices Q(t), A(t), and S(t).

Let Q(t) =
(
qij(t)

)
be the queue length matrix where qij(t)

is the length of the jth VOQ at input port i during time slot
t. Let A(t) =

(
aij(t)

)
be the traffic arrival matrix where

aij(t) is the number of packets arriving at the input port i
destined for output port j during time slot t, which can be
viewed as the counting process associated with underlying
traffic arrival process. Let S(t) =

(
sij(t)

)
be the schedule

(matching) matrix for time slot t output by the crossbar
scheduling algorithm. As we explained earlier, each S(t) is
a 0-1 matrix in which sij(t) = 1 if and only if input port
i is matched with output j during time slot t. Then, the
queue length matrix Q evolves over time as follows. For
∀1 ≤ i, j ≤ N ,

qij(t+ 1) = [qij(t) + aij(t)− sij(t)]+ (5)

where [·]+ is defined as max{ · , 0}. With a slight abuse
of the notation, we rewrite (5), into the matrix form, as
Q(t+ 1) = [Q(t) +A(t)− S(t)]+.

Like in [34], we assume that, for each 1 ≤ i, j ≤ N ,
{aij(t)}∞t=0 is a sequence of i.i.d. random variables, and the

6

second moment of their common distribution (= E
[
a2ij(0)

]
)

is finite. Note that, the same or even stronger assumptions
(e.g., Bernoulli i.i.d. arrivals) were made for proving the
stabilities of TASS [33] and Serena [10] respectively. For
ease of presentation, we refer to such an A(t) as an i.i.d.
arrival (counting) process in the sequel.

Now we flatten the N ×N matrices Q, A, and S into N2-
dimensional vectors in the row-major order, i.e., the first row
of the matrix becomes the first N scalars in the vector, the
second row becomes the next N scalars, and so on. Now that
Q, A, and S are vectors, we can take their inner products,
denoted as 〈·, ·〉, in the following derivations. For example,
〈S(t), Q(t)〉 is the weight of the schedule (matching) S(t),
w.r.t. the queue length vector Q(t), at time slot t.

5.2 TASS, Serena, and Their Stability

5.2.1 The Adaptive and Non-Degenerative Family
The idea of TASS [33], shown below, is very simple: gen-

erate a “fresh” (i.e., independent of all other random vec-
tors) random matching R(t), compare its weight with that
of S(t−1), the matching used in the previous time slot, and
use the winner as the matching for the current time slot (i.e.,
S(t)). Here R(t) is a random vector whose distribution is
parameterized only by the current VOQ length vector Q(t).
Amazingly, such a simple adaptive algorithm can achieve
100% throughput, albeit at the cost of higher delays.

S(t) =

{
R(t) if 〈Q(t), R(t)〉 ≥ 〈Q(t), S(t− 1)〉
S(t− 1) otherwise

(6)

Note that the TASS algorithm is also by definition (i.e., (6))
non-degenerative, defined next.

Definition 1. A scheduling algorithm is non-degenerative
if it guarantees that for any time slot t ≥ 1, we have

〈S(t), Q(t)〉 ≥ 〈S(t− 1), Q(t)〉

5.2.2 Generalized Algorithm Family Π̃

Denote Π as the family of adaptive algorithms defined by
(6). For the TASS’ stability proof and theorem to apply also

to Serena, we need to generalize the family of Π to Π̃ that
is defined by

S(t) = F
(
R(t), S(t− 1), Q(t)

)
(7)

where F is an operator, the resulting S(t) satisfies the non-
degenerative property defined above, and R(t) is a random
schedule whose probability distribution is a function only
of Q(t). To ease proving our result, we also force S(t) =
R(t) when all queues (VOQs) are empty at time slot t, i.e.,
to “forget the previous schedule S(t − 1)” and reset to the
“default random schedule”R(t).

In TASS, this F is clearly the “MAX operator”, that is,
choosing the heavier schedule w.r.t. Q(t), between R(t) and
S(t − 1). In Serena, this F is the MERGE operator, that
is, S(t) = MERGE

(
R(t), S(t − 1), Q(t)

)
. As we explained

in §3.2.2, the MERGE operator combines two matchings
into one that is at least as heavy, w.r.t. Q(t), as either, so
the Serena algorithm, like TASS, is also non-degenerative.

Hence, Serena also belongs to this extended family Π̃. Now

it is clear that QPS-Serena also belongs to Π̃ because it dif-
fers from Serena only in how the random schedule R(t) is

computed, and in QPS-Serena this R(t) is generated in the
“Q(t)-proportional” manner (so its probability distribution
is a function only of Q(t)).

We claim that, given any switching algorithm π ∈ Π̃, the
joint queueing and scheduling process

{(
Q(t), S(t)

)}∞
t=0

, re-
sulting from π and any i.i.d. arrival process A(t) (not neces-
sarily admissible), is a Markov chain. This property is clear
from the following two facts. First, by (7), S(t) is a function
of only Q(t) and S(t − 1) (note R(t) is a function only of
Q(t)). Second, by (5), Q(t) is a function of only Q(t − 1),
S(t− 1), and the random packet arrival vector A(t) that is
independent of all other random vectors.

5.2.3 Stability Theorem for Family Π̃

The following theorem, concerning the stability of the

family of switching algorithms Π̃, was proven in [33].

Theorem 1. For any (randomized) algorithm π ∈ Π̃ that
satisfies Property P, defined next, and under any admissible
i.i.d. arrival process A(t) (defined in §5.1), the joint queue-
ing and scheduling process

{(
Q(t), S(t)

)}∞
t=0

is an ergodic
Markov chain, and as a consequence, the queueing process

{Q(t)}∞t=0 converges in distribution to a random vector Q̂.
Furthermore,

E[‖Q̂‖1] <∞

where ‖ · ‖1 is the 1-norm.

Fix a randomized switching algorithm π. Let W (t) ,
〈S(t), Q(t)〉 be the weight of the schedule output by π at
time slot t. Denote as WQ the weight of the MWM w.r.t. a
queue length vector Q, i.e., WQ , max

S
{〈S,Q〉}. Let SQ be

one of the schedules that attain this maximum weight (i.e.,
〈SQ, Q〉 = WQ).

Definition 2 (Property P [33]). A switching algorithm
π satisfies Property P if at any time slot t,

P
[
W (t) = WQ(t)

]
≥ δ

where δ > 0 is a constant independent of the time slot t and
the queue length vector Q(t).

In other words, π satisfies Property P if, at any time slot t,
the schedule S(t) output by π is a MWM with at least a
constant probability δ. Both TASS and Serena satisfy Prop-
erty P because there is a constant (w.r.t. Q(t)) probability
for R(t) to be a MWM in both cases, and when this hap-
pens, S(t) remains a MWM after a “MAX” or “MERGE”
operation. Since both TASS and Serena also belong to fam-

ily π ∈ Π̃, Theorem 1 implies that both can achieve 100%
throughput.

5.3 Stability of QPS-Serena
Although QPS-Serena also belongs to family Π̃, Theo-

rem 1 is not applicable to QPS-Serena, because it can be
shown that QPS-Serena does not satisfy Property P. We es-
tablish a stronger theorem that allows us to prove that QPS-
Serena can achieve 100% throughput. More specifically, we
first show in Lemma 1 that QPS-Serena satisfies a weaker
condition called (ε, δ)-MWM, defined next2. Then we show

2Note that, the definition of (ε, δ)-MWM is quite different
than that of the 1-APRX (to MWM) defined in [28].

7

in Theorem 2 that this weaker condition, combined with the

Π̃ family membership, is sufficient for a switching algorithm
to achieve 100% throughput.

Definition 3. A switching algorithm π is called (ε, δ)-
MWM, if ∀ε > 0, there exists a constant 0 < δ ≤ 1 s.t.

P
[
W (t) ≥ (1− ε)WQ(t)

]
≥ δ

where δ is a constant independent of the time slot t and the
queue length vector Q(t). Note this δ can depend on ε and
other (constant) system parameters such as N . Here, W (t)
and WQ(t) are similarly defined as before.

In other words, an algorithm π is called (ε, δ)-MWM if,
at any time slot t, the schedule S(t) output by π is within
(1− ε) of the optimal (i.e., MWM) with at least a constant
probability δ. This condition is clearly weaker than Property
P, which requires S(t) to be optimal (i.e., MWM) with at
least a constant probability.

The following Lemma shows that QPS alone is (ε, δ)-MWM.
Since at any time slot t, QPS-Serena merges S(t − 1) with
the schedule R(t) output by QPS, resulting in a schedule
S(t) that is at least as heavy as R(t), QPS-Serena is also
(ε, δ)-MWM. Therefore, by Theorem 2 below, we conclude
that QPS-Serena can achieve 100% throughput.

Lemma 1. QPS is (ε, δ)-MWM.

We defer its proof of to Appendix D in the interest of space.

Theorem 2. For every algorithm π ∈ Π̃ that is (ε, δ)-
MWM, the conclusion of Theorem 1 (i.e., convergence to a
stationary distribution with finite first moment) continues to
hold, under admissible i.i.d. arrivals.

We defer its proof to Appendix C in the interest of space.
Remark: Like Theorem 2 above, Theorem 1 in [20] also
establishes stability with conditions weaker than that are
needed in Theorem 1. However, they weaken different parts
of the assumptions made in Theorem 1, and hence their
proofs are very different. Theorem 2 above weakens Prop-
erty P in Theorem 1 above to (ε, δ) −MWM . In contrast,
Theorem 1 in [20] requires Property P, but weakens the non-
degenerative requirement (see Definition 1) in Theorem 1
above, by allowing it to be violated with a tiny probability.

6. EVALUATION
In this section, we compare the performance of two QPS-

augmented algorithms, QPS-iSLIP and QPS-Serena, against
the iterative Longest Queue First (iLQF) [16], iSLIP-ShakeUp
(iSLIP augmented by ShakeUp [11]), and the two original al-
gorithms, iSLIP [17] and Serena [10]. We evaluate, through
simulations, their throughputs and delays under various load
conditions and traffic patterns. Maximum Weight Matching
(MWM) is also simulated to provide a benchmark for these
comparisons.

The evaluation results show conclusively that QPS-iSLIP
and QPS-Serena outperform iSLIP and Serena respectively
in both throughput and delay. They also show that QPS-
iSLIP brings about the same amount of performance im-
provement to iSLIP as iLQF, even though QPS-iSLIP is far
less computationally expensive (O(log2N) per port) than
iLQF (O(N) per port), thus giving the “same bang for less
buck”. Furthermore, they show QPS-iSLIP overall performs
better than iSLIP-ShakeUp.

6.1 Simulation setup
In all our simulations, we set the number of input/output

ports N = 32. Note that we have also investigated how
the mean delay performance of various switching algorithms
scales with respect to N ; these results are shown in Ap-
pendix E.2. For the accurate measurement of throughput
and delay, each VOQ is assumed to have infinite buffer, so
that there is no packet drop at any input port. Every simu-
lation run lasts 6, 000×N2 (= 6.144× 106) time slots. This
duration is chosen so that every simulation run enters the
steady state after a tiny fraction of this duration and stays
there for the rest. The throughput and delay measurements
are taken after the simulation run enters the steady state.

We initially assume Bernoulli i.i.d. traffic arrivals: the
distributions of arrivals to different input ports are i.i.d.,
and in each time slot, there is a probability ρ ∈ (0, 1) that
a packet will arrive. We will then look at bursty traffic
arrivals further below. The following 4 standard types of
load matrices (i.e., traffic patterns) are used for generating
the switch’s workloads:

1. Uniform: packets arriving at any input port go to each
output port with probability 1

N
.

2. Quasi-diagonal : packets arriving at input port i go to
output port j = i with probability 1

2
and go to any

other output port with probability 1
2(N−1)

.

3. Log-diagonal : packets arriving at input port i go to

output port j = i with probability 2(N−1)

(2N)−1
and go to

any other output port j with probability equal 1
2

of
the probability of output port j−1 (note: output port
0 equals output port N).

4. Diagonal : packets arriving at input port i go to output
port j = i with probability 2

3
, or go to output port

(j modN) + 1 with probability 1
3
.

The load matrices are listed in order of how skewed the
volumes of traffic arrivals to different output ports are: from
uniform being the least skewed, to diagonal being the most
skewed.

In both iSLIP and iLQF, the total number of iterations
in a time slot is usually set to log2N . However, to achieve
a fair comparison between iSLIP, iLQF, and QPS-iSLIP, in
simulating these algorithms, the total number of iterations
in a time slot is set to 1 + log2N . For instance, with QPS-
iSLIP, this means that we ran 1 iteration of QPS followed by
log2N iterations of iSLIP. In doing so, we emphasize that
the outperformance of QPS-iSLIP does not come from an
extra iteration. Note that, with 1 + log2N iterations, the
complexity of both iSLIP and QPS-iSLIP remains O(log2N)
per port and that of iLQF remains O(N) per port.

For iSLIP-ShakeUp, we alternate between an iSLIP iter-
ation and a ShakeUp iteration also for a total of log2N + 1

iterations (i.e., log2 N+1

2
iterations for each). This algorith-

mic setting and parameter setting both follow the guide-
lines provided in [11] for iSLIP-ShakeUp, and the through-
put numbers we have obtained (shown in Table 1) match
those reported in [11].

We consider two performance metrics: throughput and
delay. We measure two types of delays: the mean delay and
the 95th percentile delay. The 95th percentile delay is the
delay value exceeded by exactly 5% of the packets. This
95th percentile delay gauges whether a crossbar scheduling
algorithm sacrifices the delay performance of packets in the

8

Traffic Uniform Quasi-diag Log-diag Diag
iSLIP 100.00% 81.70% 83.85% 83.47%
QPS-iSLIP 100.00% 99.38% 96.46% 88.36%
iSLIP-ShakeUp 99.98% 91.08% 92.73% 92.41%
iLQF 100.00% 99.41% 96.47% 89.32%

Table 1: Maximum throughput.

longest VOQs when evacuating other VOQs. In our simu-
lations, the 95th percentile delay is measured by using the
high dynamic range (HDR) histograms [1].

6.2 QPS Throughput Results
We have measured the maximum achievable throughput

of iSLIP, QPS-iSLIP, iSLIP-ShakeUp and iLQF, under the
4 different load matrices and an offered load close to 100%.
The results are presented in Table 1. We do not include the
throughputs of MWM, Serena and QPS-Serena in Table 1
because they provably achieve 100% throughput.

There are three important observations from Table 1. First,
for non-uniform traffic patterns, where iSLIP does poorly,
QPS-iSLIP significantly boosts the throughput performance
of iSLIP, increasing it by an additive term of 0.1768, 0.1261,
and 0.0489 for the quasi-diagonal, log-diagonal, and diago-
nal load matrices respectively. Moreover, for non-uniform
traffic, the throughput of QPS-iSLIP are very close to those
of iLQF, which is much more expensive computationally.
Second, the throughput of QPS-iSLIP is higher than that
of iSLIP-ShakeUp under all load matrices except diagonal.
Third, just like iSLIP, QPS-iSLIP can achieve 100% through-
put under uniform traffic.

We highlight a subtle fact that may sound counterintu-
itive to some readers: That a switch (running a scheduling
algorithm) has a throughput of µ < 1 when the offered load
is 100% does not imply that the switch is stable under any
offered load (say ρ) smaller than µ. This is because the extra
1 − ρ “switching resource” freed up by the reduced offered
load may not all be efficiently utilized by the scheduling al-
gorithm to clear up the longest queues. For example, iSLIP-
ShakeUp is not stable under Quasi-diagonal traffic when the
offered load is 90% (see the corresponding missing point in
Figure 3 (1st row, 2nd from left)), even though its through-
put under 100% offered load is 91.08%. In the sequel, we use
the terms “load”, “normalized load”, “offered load”, “traffic
load” and “load factor” interchangeably.

6.3 QPS Delay Performance Results

6.3.1 Bernoulli arrivals
Figure 3 (the 1st row) presents the mean delays of iSLIP,

QPS-iSLIP, iSLIP-ShakeUp, iLQF, and MWM under the
4 different load matrices. Since iSLIP, QPS-iSLIP, iSLIP-
ShakeUp, and iLQF generally cannot achieve 100% through-
put, we only measure their delay performance under the
offered loads that make them stable; in all figures in the
sequel, each “missing point” on a curve indicates that the
corresponding scheduling algorithm is not stable under the
corresponding offered load.

Figure 3 (the 1st row) clearly shows that QPS-iSLIP has
much lower mean delays than iSLIP under all load matri-
ces, especially when the load factor is high (e.g., 80%); we
note that the differences between the curves unfortunately
look smaller on a log scale (on the y-axis) than they ac-

tually are.In addition, the mean delays of QPS-iSLIP are
very close to those of iLQF, the more expensive algorithm
computationally, under all load matrices and factors.

Figure 3 (the 1st row) also shows that QPS-iSLIP has
either similar or slightly higher mean delays than iSLIP-
ShakeUp under all load matrices, when the traffic load is
low to moderate. However, when the traffic load is high
(say > 80%), the iSLIP-ShakeUp either becomes unstable
or has higher mean delays than QPS-iSLIP, under all load
matrices.

Figure 3 (the 2nd row) presents the mean delays of Serena,
QPS-Serena, and MWM under the 4 different load matrices.
We can see that QPS-Serena outperforms Serena under all
load matrices for all load factors. More specifically, QPS-
Serena outperforms Serena by a wide margin, under uniform
and diagonal load matrices for all load factors; it does so also
under quasi-diagonal and log-diagonal load matrices for load
factors that are not too high (≤ 0.8).

Figure 3 (the 2nd row) also shows that the relative dif-
ference of the mean delay between QPS-Serena and Serena
generally becomes larger as the traffic load becomes lighter.
This phenomena is due to the choice of the starter match-
ing. In Serena, the starter matching is the arrival graph,
and when the load is light, the arrival graph does not pro-
vide enough “cue” for the scheduling algorithm to select the
longest VOQs. QPS-Serena, on the other hand, has a better
starter matching that accounts for the VOQ lengths under
any load conditions, and thus beats Serena in mean delay.
The outperformance of QPS-Serena over Serena reinforces
our message about the importance of choosing a good starter
matching.

Figure 4 (the 1st row) shows the 95th percentile delays of
iSLIP, QPS-iSLIP, iSLIP-ShakeUp, iLQF, and MWM under
the 4 different load matrices. Due to the presence of delay
values that are very close to 0, which would severely“deform”
all the curves if they were plotted in a log scale on the y-axis,
Figure 4 is plotted in the linear scale on the y-axis. Figure 4
(the 1st row) shows that QPS-iSLIP and iLQF achieve much
lower 95th percentile delays than iSLIP and iSLIP-ShakeUp,
especially under heavy loads.

Figure 4 (the 2nd row) shows the 95th percentile delays
of QPS-Serena, Serena, and MWM under the 4 different
load matrices. Again QPS-Serena outperforms Serena by a
wide margin under all four load matrices for almost all load
factors.

6.3.2 Bursty arrivals
In real networks, packet arrivals are likely to be bursty. In

this section, we evaluate the performance of these schedul-
ing algorithms under bursty traffic, generated by a two-state
ON-OFF arrival process described in [10]. The durations of
each ON (burst) stage and OFF (no burst) stage are geo-
metrically distributed: the probabilities the ON and OFF
state lasts for t ≥ 0 time slots are given by

PON (t) = p(1− p)t and POFF (t) = q(1− q)t,

with the parameters p, q ∈ (0, 1) respectively. As such, the
average duration of the ON and OFF states are (1 − p)/p
and (1− q)/q time slots respectively.

In an OFF state, an incoming packet’s destination (i.e.,
output port) is generated according to the corresponding
load matrix. In an ON state, all incoming packet arrivals to
an input port would be destined to the same output port,

9

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform
Serena QPS-Serena MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Diagonal

Figure 3: Mean delays under Bernoulli i.i.d. traffic arrivals with the 4 load matrices.

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500

9
5

th
 P

e
rc

e
n
ti
le

 D
e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

25

50

75

100

125

150

175

200
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

70

140

210

280

350

420

490

560
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

15

30

45

60

75

90

105

120
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

200

400

600

800

1000

1200

9
5

th
 P

e
rc

e
n
ti
le

 D
e
la

y

Uniform
Serena QPS-Serena MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500

4000
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

100

200

300

400

500

600

700

800
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500
Diagonal

Figure 4: 95th percentile delay under Bernoulli i.i.d. traffic arrivals with the 4 load matrices.

10

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5

M
e
a
n
 D

e
la

y

Uniform
Serena QPS-Serena MWM

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Diagonal

Figure 5: Mean delays under bursty traffic with the 4 load matrices.

thus simulating a burst of packet arrivals. By adjusting p, we
can control the desired average burst size while by adjusting
q, we can control the load of the traffic.

We first compare QPS-iSLIP against iSLIP, iSLIP-ShakeUp,
iLQF, and MWM, with average burst sizes ranging from 1
to 1024 packets, on an offered load of 0.75. We use this
load factor because iSLIP is not stable under certain load
matrices when the offered load is larger than or equal to 0.8.

The simulation results are shown in Figure 5 (the 1st

row). We can see that QPS-iSLIP beats iSLIP, and is on
par with iLQF and QPS-ShakeUp, under all load matrices
for all burst sizes. Furthermore, QPS-iSLIP beats iSLIP by
a wide margin, under quasi-diagonal and log-diagonal load
matrices. In fact, the starter matching generated by QPS for
iSLIP is so superior that QPS-iSLIP is only slightly worse
than MWM in the mean delay performance under all load
matrices for all burst sizes.

We then evaluate QPS-Serena’s mean delay performance
against Serena’s and MWM’s. Figure 5 (the 2nd row) presents
the results with average burst sizes ranging from 1 to 1024
packets under an offered load of 0.95, under the 4 load ma-
trices respectively. Performance under other heavy loads,
such as at 0.9, is similar to this case.

We can see from Figure 5 (the 2nd row) that the mean
delay increases for all scheduling algorithms when the burst
size increases, under all 4 load matrices, which is not sur-
prising. However, Figure 5 (the 2nd row) also clearly shows
that QPS-Serena handles highly bursty traffic much better
than Serena, as we will elaborate next.

We make the following two observations from Figure 5
(the 2nd row). First, QPS-Serena outperforms Serena by
an increasingly wider margin, in both absolute and rela-
tive terms, as the burst size becomes larger. Second, the
gap between QPS-Serena and MWM shrinks rapidly as the

burst size becomes larger. Our explanation for the first ob-
servation is that, because QPS-Serena obtains information
directly from the current lengths of the VOQs, rather than
indirectly from the current arrivals, QPS-Serena reacts to
the rapid build-up of packets in a VOQ from a past traf-
fic burst much more promptly than Serena. For the second
observation, the reason is as follows. When the burst size
increases, the longest one or two VOQs at every input port
account for an increasingly higher percentage of all packets
queued at the input port, and hence have an increasingly
higher chances of being sampled by QPS, so the resulting
starter matching becomes increasingly closer to an MWM.

7. RELATED WORK
In this section, we first provide a brief survey of cross-

bar scheduling algorithms or policies, besides those we have
already described earlier (including MWM [34], iSLIP [17],
iLQF [16], Serena [10], and ShakeUp [11]), focusing on those
directly related to our work. Then in §7.2, we compare our
QPS strategy with other queue-proportional resource allo-
cation policies.

7.1 Crossbar Scheduling Algorithms
We order the presentations of these algorithms/policies

roughly by their (total) computational complexities.

7.1.1 Belief Propagation Algorithms
As explained earlier, although MWM is an ideal algorithm

in terms of performance, its most efficient implementation [7]
has a prohibitively high computational complexity ofO(N3).
Note that MWM-α [14] and MWM-0+ [31] are variants that
only explore the MWM policy space by adopting different
edge weight functions; they contain no algorithmic innova-
tions that would reduce the O(N3) complexity of MWM.

11

Another family of approximate MWM is the family of dis-
tributed iterative algorithms [4,5] based on belief-propagation
(BP). In this family, the input ports engage in multiple iter-
ations of message exchanges with the output ports to learn
enough information about the lengths of all N2 VOQs so
that each input port can decide on a distinct output port to
match with. The resulting matching either is, or is close to,
the MWM. Note that the BP-based algorithms are simply
parallel algorithms to compute the MWM: the total amount
of computation, or the total number of messages needed to
be exchanged, is still O(N3), but is distributed evenly across
the input and the output ports (i.e., O(N2) work for each
input/output port).

A technique called BP-assisted scheduling was proposed
in a recent work [3], in which BP is used to boost the per-
formance of certain distributed iterative algorithms (called
“carrier”algorithms) that are not BP-based such as iLQF [16].
Its idea is to replace the contents of the messages exchanged
between input and output ports by those that would be ex-
changed in a BP-based algorithm. The “BP assistance” part
alone has a total computational complexity of O(N2), so
it is best suited for a carrier algorithm that has the same
asymptotical complexity, such as iLQF.

7.1.2 MVM and LHPF
Another approach to reducing the complexity to O(N2.5)

while achieving performance similar to MWM is the fam-
ily of Maximum Vertex-weighted Matching (MVM) poli-
cies [18]. The MVM family was later extended to a larger
family called Lazy Heaviest Port First (LHPF) [12] that also
has O(N2.5) complexity. In a standard MVM policy, each
input or output port, denoted as a vertex, is assigned a
weight that is equal to the total number of packets (across
all N VOQs) queued at the vertex. The weight of an edge
(i, j) is the sum of the weights of its two vertices i and j,
if there is at least one packet in the corresponding VOQ
(i.e., qij), and is 0 otherwise. An MVM policy dictates that
the heaviest (vertex-weighted) matching be used for cross-
bar scheduling. MVM can achieve 100% throughput, and
has a delay performance quite close to that of MWM.

7.1.3 Lower-Complexity Randomized Algorithms
Several randomized algorithms, starting with TASS [33]

and culminating in Serena [10, 27] were proposed to push
the total complexity further down to O(N) (i.e., linear com-
plexity). We have described in earlier sections both TASS
and Serena in details.

A randomized scheduling algorithm specialized for switch-
ing variable-size packets was proposed in [38] that has O(1)
total computational complexity (per switch). It belongs to
a family of randomized algorithms (e.g., [9, 22, 24, 29]) pri-
marily designed for computing a collision-free transmission
schedule, which corresponds to an independent set in the
interference graph, in a wireless network. These algorithms
all build upon a Markov Chain Monte-Carlo (MCMC) tech-
nique called Glauber dynamics [36] for computing indepen-
dent sets (convertible to bipartite matchings in the switching
context).

The algorithm in [38] for computing, at each time slot t,
the matching for the next time slot S(t+1), works follows. It
samples one of the N2 VOQs (edges) uniformly at random.
Suppose the sampled VOQ (edge) is the jth VOQ at input
port i (i.e., edge (i, j)). Then, with probability ew/(ew+1),

it adds the edge (i, j) (i.e., pairing input port i with output
port j) to or keeps the edge in S(t + 1), if neither i nor j
is currently matched (in S(t)) or (i, j) already belongs to
the S(t). Here the weight w is set to the celebrated slowly
varying weight function ln(ln(e+x)) proposed in [24], where
x is the weight of the edge (i, j) (i.e., the length of the
corresponding VOQ). Clearly, the algorithm makes at most
one change (hence O(1) total complexity), from any time
slot t to the next, to the configuration of the crossbar (i.e.,
the matching).

It was proven in [24] that all such algorithms that use this
weight function, including the algorithm in [38], can achieve
100% throughput. However, our simulation results (pre-
sented in Appendix E.4) show that, when used for switch-
ing fixed-size packets, the algorithm in [38] has very poor
delay performance and the total queue length does not sta-
bilize (i.e., keeps increasing) until after a very large number
of time slots. These simulation results are not surprising:
all algorithms that adopt this ln ln(e + ·) weight function
have similar poor delay performance, because as explained
in [9], the ln ln(e + ·) weight function, aimed at achieving
100% throughput [24], reacts very slowly to changes in queue
lengths and hence allows long queues to build up.

7.2 Queue-Proportional Resource Allocation
Serving queues at rates or probabilities proportional to

their (queue) lengths is an intuitively appealing resource al-
location approach that has been used in various computer
and communications systems for many years. For example,
in [8], a simple queue-proportional scheduler was proposed
for scheduling transmissions in wireless broadcast channels,
and a geometric programming based formulation of this prob-
lem specialized to the Gaussian broadcast channel was later
established in [25,26]. However, unlike our QPS strategy, in
which an input port proposes to an output port with a prob-
ability proportional to the length of the corresponding VOQ,
the scheduler in [8,25,26] dictates that each link receives an
service rate proportional to its current queue length during
each time slot. As a result, it has to solve a convex op-
timization problem that has a much higher computational
complexity.

In [15], B. Li et al. proposed a generalized version of the
above queue-proportional scheduler called Queue-Proportional
Rate Allocation (QPRA), with the objective of achieving
maximum throughput in a multi-hop wireless network. As
the QPRA algorithm is generally hard to implement in prac-
tice, they further proposed a low-complexity version called
LC-QPRA to make their scheme more practical. The LC-
QPRA algorithm resembles the proposing step in our QPS
scheme in that, during each time slot, a sender proposes
(attempts to transmit) to each receiver with a probability
proportional to the length of the corresponding “VOQ”.

There are three key differences between QPRA and QPS
however. First, in QPRA, during any time slot, the probabil-
ity with which each sender proposes (to any receiver) is also
proportional to its total queue length, whereas in QPS, this
probability is 1 for any sender unless its total queue length
is 0. Second, in QPRA, if two senders propose (transmit) to
the same receiver during a time slot, both transmissions are
corrupted, whereas in QPS, only one is allowed to eventu-
ally transmit a packet to the receiver. Third, in QPRA, the
outcomes (successful or corrupted) of these proposals (at-
tempted transmissions) define the final matching, whereas

12

QPS only generates a starter matching that will be further
refined into a full or more complete matching.

Finally, another policy was proposed in [37] for scheduling
packets in a single-hop network, where crossbar scheduling
is a special case. However, this policy is closely related to
MWM-0+ [31], and is unrelated to QPRA or QPS.

8. CONCLUSION
In this paper, we propose a new proposing strategy, called

queue-proportional sampling (QPS), that generates supe-
rior starter matchings than all other known strategies. We
use QPS to augment two existing crossbar scheduling al-
gorithms, namely Serena and iSLIP. We show that the aug-
mented algorithms, namely QPS-Serena and QPS-iSLIP, out-
perform the original algorithms by a wide margin, under
various load conditions and traffic patterns. These perfor-
mance enhancements come at virtually no additional com-
putational cost due to QPS being an O(1) algorithm (per
port). Finally, to prove that QPS-Serena can achieve 100%
throughput, we have proved a new and stronger stability
theorem.

Acknowledgements
This work is supported in part by US NSF grants CNS-
1423182 and CNS-1302197 and Australian Research Council
grant DP110103505.

9. REFERENCES
[1] Hdrhistogram: A high dynamic range (hdr) histogram.

https://github.com/HdrHistogram/HdrHistogram.

[2] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.
Thacker. High-speed switch scheduling for local-area
networks. ACM Trans. Comput. Syst., 11(4):319–352,
Nov. 1993.

[3] S. Atalla, D. Cuda, P. Giaccone, and M. Pretti.
Belief-propagation-assisted scheduling in input-queued
switches. IEEE Transactions on Computers,
62(10):2101–2107, Oct. 2013.

[4] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma.
Iterative scheduling algorithms. In Proceedings of the
IEEE INFOCOM, pages 445–453, Anchorage, AK,
USA, May 2007.

[5] M. Bayati, D. Shah, and M. Sharma. Max-product for
maximum weight matching: Convergence, correctness,
and lp duality. IEEE Transactions on Information
Theory, 54(3):1241–1251, Mar. 2008.

[6] G. Birkhoff. Tres observaciones sobre el algebra lineal.
Univ. Nac. Tucumán Rev. Ser. A, 5:147–151, 1946.

[7] J. Edmonds and R. M. Karp. Theoretical
improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264,
Apr. 1972.

[8] A. Eryilmaz, R. Srikant, and J. R. Perkins.
Throughput-optimal scheduling for broadcast
channels. In Proceedings of ITCom (Modeling and
Design of Wireless Networks), Denver, CO, August
2001.

[9] J. Ghaderi and R. Srikant. On the design of efficient
csma algorithms for wireless networks. In 49th IEEE
Conference on Decision and Control (CDC), pages
954–959, Dec 2010.

[10] P. Giaccone, B. Prabhakar, and D. Shah. Randomized
scheduling algorithms for high-aggregate bandwidth
switches. IEEE Journal on Selected Areas in
Communications, 21(4):546–559, May 2003.

[11] M. W. Goudreau, S. G. Kolliopoulos, and S. B. Rao.
Scheduling algorithms for input-queued switches:
randomized techniques and experimental evaluation.
In Proceedings of the IEEE INFOCOM, pages
1634–1643 vol.3, Mar. 2000.

[12] G. R. Gupta, S. Sanghavi, and N. B. Shroff. Node
weighted scheduling. In Proceedings of the ACM
SIGMETRICS, pages 97–108, Seattle, WA, USA, Jun.
2009.

[13] M. Karol, M. Hluchyj, and S. Morgan. Input versus
output queueing on a space-division packet switch.
IEEE Transactions on Communications,
35(12):1347–1356, Dec. 1987.

[14] I. Keslassy and N. McKeown. Analysis of scheduling
algorithms that provide 100% throughput in
input-queued switches. In Proceedings of the Allerton
Conference on Communication, Control and
Computing, Oct. 2001.

[15] B. Li and R. Srikant. Queue-proportional rate
allocation with per-link information in multihop
networks. In Proceedings of the ACM SIGMETRICS,
pages 97–108, Portland, OR, USA, Jun. 2015.

[16] N. McKeown. Scheduling Algorithms for Input-Queued
Cell Switches. PhD thesis, University of California at

13

Berkeley, May 1995.

[17] N. McKeown. The iSLIP scheduling algorithm for
input-queued switches. IEEE/ACM Transactions on
Networking, 7(2):188–201, Apr. 1999.

[18] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% throughput in an
input-queued switch. IEEE Transactions on
Communications, 47(8):1260–1267, Aug. 1999.

[19] A. Mekkittikul and N. McKeown. A practical
scheduling algorithm to achieve 100% throughput in
input-queued switches. In Proceedings of the IEEE
INFOCOM, pages 792–799 vol.2, Mar. 1998.

[20] E. Modiano, D. Shah, and G. Zussman. Maximizing
throughput in wireless networks via gossiping. In
Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS ’06/Performance ’06, pages 27–38, New
York, NY, USA, 2006. ACM.

[21] J. v. Neumann. A certain zero-sum two-person game
equivalent to the optimal assignment problem.
Contributions to the Theory of Games, 2:5–12, 1953.

[22] J. Ni, B. Tan, and R. Srikant. Q-csma:
Queue-length-based csma/ca algorithms for achieving
maximum throughput and low delay in wireless
networks. IEEE/ACM Transactions on Networking,
20(3):825–836, June 2012.

[23] I. Olkin and A. W. Marshall. Inequalities: theory of
majorization and its applications. Academic press,
2016.

[24] S. Rajagopalan, D. Shah, and J. Shin. Network
adiabatic theorem: An efficient randomized protocol
for contention resolution. In Proceedings of the
Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS ’09, pages 133–144, New York, NY,
USA, 2009. ACM.

[25] K. Seong, R. Narasimhan, and J. M. Cioffi. Queue
proportional scheduling in gaussian broadcast
channels. In 2006 IEEE International Conference on
Communications, volume 4, pages 1647–1652, June
2006.

[26] K. Seong, R. Narasimhan, and J. M. Cioffi. Queue
proportional scheduling via geometric programming in
fading broadcast channels. IEEE Journal on Selected
Areas in Communications, 24(8):1593–1602, Aug 2006.

[27] D. Shah, P. Giaccone, and B. Prabhakar. Efficient
randomized algorithms for input-queued switch
scheduling. IEEE Micro, 22(1):10–18, Jan. 2002.

[28] D. Shah and M. Kopikare. Delay bounds for
approximate maximum weight matching algorithms
for input queued switches. In Proceedings of the IEEE
INFOCOM, volume 2, pages 1024–1031 vol.2, 2002.

[29] D. Shah and J. Shin. Randomized scheduling
algorithm for queueing networks. The Annals of
Applied Probability, 22(1):128–171, 2012.

[30] D. Shah, N. Walton, and Y. Zhong. Optimal
queue-size scaling in switched networks. In Proceedings
of the ACM SIGMETRICS, pages 17–28, New York,
NY, USA, 2012. ACM.

[31] D. Shah and D. Wischik. Optimal scheduling
algorithms for input-queued switches. In Proceedings
of the IEEE INFOCOM, pages 1–11, Barcelona,

Spain, Apr. 2006.

[32] D. Shah and D. Wischik. Optimal scheduling
algorithms for input-queued switches. In Proceedings
of the IEEE INFOCOM, pages 1–11, Apr. 2006.

[33] L. Tassiulas. Linear complexity algorithms for
maximum throughput in radio networks and input
queued switches. In Proceedings of the IEEE
INFOCOM, pages 533–539, San Francisco, CA, USA,
Mar. 1998.

[34] L. Tassiulas and A. Ephremides. Stability properties
of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control,
37(12):1936–1948, Dec. 1992.

[35] R. Tweedie. The existence of moments for stationary
markov chains. Journal of Applied Probability, pages
191–196, 1983.

[36] E. Vigoda. A note on the glauber dynamics for
sampling independent sets. Electronic Journal of
Combinatorics, 8(1):1–8, 2001.

[37] N. Walton. Concave switching in single and multihop
networks. In Proceedings of ACM SIGMETRICS,
pages 139–151, Austin, TX, USA, Jun. 2014.

[38] S. Ye, T. Shen, and S. Panwar. An O(1) scheduling
algorithm for variable-size packet switching systems.
In Proceedings of the 48th Annual Allerton
Conference, pages 1683–1690, Sept. 2010.

APPENDIX
A. QPS VARIANTS

The success we have with QPS leads us to wonder if we
can obtain better switching performance by using other pro-
portional sampling strategies. For example, instead of set-
ting sampling probabilities proportional to the lengths of
the VOQs, we may set them proportional to the squares of
the lengths of the VOQs. More generally, we can set the
sampling probabilities proportional to any arbitrary func-
tion f(·) of the lengths of the VOQs. We refer to this family
of strategies as FQPS, where QPS is a special case (using a
linear weight function f(x) = x).

To some readers, FQPS may sound similar to MWM-
α [14]. They are, however, fundamentally different. The
MWM-α work studies the performances of MWM when the
weight of a VOQ queue of length x is set to xα; it does not
care how a MWM is computed. FQPS, on the other hand,
is about how to better generate a starter matching that can
result in a final matching that is as close to the MWM as
possible, after a reasonable amount of further computation
(e.g., O(N)).

We have evaluated the performance of several FQPS vari-
ants through simulations. Simulation results (see Appendix E.1)
show that the delay performance of QPS can be slightly im-
proved with certain nonlinear weight functions (e.g., with
f(x) = x2). However, whereas the computational complex-
ity of QPS is O(1) per packet, other FQPS variants all have
a higher computational complexity of O(logN) per packet.
Hence we conclude that QPS overall remains the best prac-
tical solution.

B. SPACE COMPLEXITY OF QPS
Each node (packet) in the main data structure contains

14

3 pointers (2 pointers encoded as “〈letter〉” plus 1 for the
linked list) and the index of the VOQ (the value j in every
node in Figure 2), which needs log2N bits to store (typically
less than 2 bytes). Each array entry (packet) in the auxiliary
data structure is also a pointer. Note that, in the main data
structure, we need an array entry (record) for each VOQ, not
for each packet; since the maximum number of packets at an
input port is typically much larger than N , the number of
VOQs, the memory overhead of these array entries (record),
is no more than 2 bytes per packet. Therefore, the memory
overhead of the data structures is no more than 4 pointers
(4 bytes each) plus 4 bytes, or 20 bytes, per packet.

C. PROOF OF Theorem 2
We have explained in § 5 that, given any switching al-

gorithm π ∈ Π̃, its joint queueing and scheduling process{(
Q(t), S(t)

)}∞
t=0

, under any i.i.d. arrival processes A(t)
(not necessarily admissible), is a Markov chain. We claim
this Markov chain is irreducible and aperiodic, when π is
furthermore (ε, δ)-MWM and A(t) is furthermore admissi-
ble. Here we provide only a sketchy justification. To justify
the irreducibility, we show that Q(t), starting from any state
(i.e., queue lengths) it is currently in, will with a nonzero
probability return to the “all-queues-empty” state in a finite
number of time slots. To show this property, we claim that,
for any integer τ > 0, the switch could, with a nonzero prob-
ability, have no packet arrivals to any of its VOQs during
[t, t+ τ]. This claim is true because, the arrival process A(t)
is i.i.d., and for any 1 ≤ i ≤ N and 1 ≤ j ≤ N , we have
βij , P [aij(t) = 0] > 0 (otherwise the process aij(t) is not
admissible). Hence, when there are no packet arrivals during
[t, t+ τ], which happens with a nonzero probability, a “rea-
sonably good” switching algorithm (being non-degenerative
and (ε, δ)-MWM) can clear all the queues during [t, t + τ],
with a sufficiently large τ , and return the Q(t) part of the
Markov chain to the“all-queues-empty”state. As to the S(t)
part of the Markov chain, the algorithm resets (i.e., returns)
S(t) to the default random schedule R(t) when all queues are
empty, as explained earlier. Therefore, the Markov chain is
irreducible. To justify the aperiodicity of the Markov chain,
we note that there is a nonzero probability for the Markov
chain to stay at “all-queues-empty” for at least two consec-
utive time slots.

Now that the Markov chain is irreducible and aperiodic,
to prove Theorem 2, it remains to show that (1) the Markov
chain is positive recurrent and hence converges to a station-
ary distribution, and (2) the stationary distribution has a
finite first moment. We accomplish both by analyzing the
following Lyapunov function V (·) of Y (t) =

(
Q(t), S(t)

)
:

V (Y) = V1(Y) + V2(Y) (8)

where V1(Y) = ‖Q‖22, V2(Y) =
(
[〈ρ∗SQ − S,Q〉]+

)2
. Here,

‖ · ‖2 is the 2-norm, SQ is a schedule/matching achieving
maximum weight w.r.t. Q, and ρ∗ = 1

2
(1 + ρ), where ρ < 1

is the maximum normalized load imposed on any input or
output port as defined in (3). It is clear that ρ∗ < 1.

Note that, in [33], V1(Y) is defined in the same way as

in this work, whereas V2(Y) is defined as V2(Y) ,
(
〈SQ −

S,Q〉
)2

, which is quite different than in this work. We must
define V2(Y) differently here because if its definition in [33]
were used instead, there would be an additional positive
drift term c4V1(Y (t)) on the RHS of (11) (in Lemma 4)

which is asymptotically larger than the negative drift term
−ε1

√
V1(Y (t)) on the RHS of (10) (in Lemma 3), resulting

in an overall positive drift on the RHS of (9) when Lemma 3
and Lemma 4 are combined to prove Lemma 2.

The proof of Theorem 2 relies on the following drift con-
dition of V (Y).

Lemma 2. If the arrivals are admissible i.i.d., then there
exists B, ε > 0 such that, if V

(
Y (t)

)
> B, we have,

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]
< −ε‖Q(t)‖2 (9)

The proof of Lemma 2 in turn relies on the following two
lemmas.

Lemma 3. If the arrivals are admissible i.i.d., then the
drift of the function V1 satisfies the following inequality

E
[
V1

(
Y (t+ 1)

)
− V1

(
Y (t)

)
| Y (t)

]
≤− ε1

√
V1

(
Y (t)

)
+ 2
√
V2

(
Y (t)

)
+ c1

(10)

Here, ε1 = 1−ρ
N

, c1 = E
[
‖A(t)+1‖22] and 1 is the vector with

all its elements equal to 1.

Lemma 4. If the arrivals are admissible i.i.d., then the
drift of the function V2 satisfies the following inequality

E
[
V2

(
Y (t+ 1)

)
− V2

(
Y (t)

)
| Y (t)

]
≤ − ε2V2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (11)

Here, ε2 > 0 is a constant, c2 = 4(ρ+2)N , c3 = 4E
[(
〈1, A(t)〉+

2N
)2]

.

C.1 Proof of Lemma 3
By simple calculations and using (5), we have

E
[
V1

(
Y (t+ 1)

)
− V1

(
Y (t)

)
| Y (t)

]
=E

[
‖Q(t+ 1)‖22 − ‖Q(t)‖22 | Y (t)

]
≤E

[
〈A(t)− S(t), 2Q(t)〉 | Y (t)

]
+ E

[
‖A(t)− S(t)‖22 | Y (t)

]
(12)

Here, we use the fact that ‖Q(t + 1)‖22 = ‖[Q(t) + A(t) −
S(t)]+‖22 ≤ ‖Q(t) +A(t)− S(t)‖22.

Focusing on the first term E
[
〈A(t) − S(t), 2Q(t)〉 | Y (t)

]
above, we have

E
[
〈A(t)− S(t), 2Q(t)〉 | Y (t)

]
= 〈Λ− S(t), 2Q(t)〉
= 2〈Λ− ρ∗SQ(t), Q(t)〉+ 2〈ρ∗SQ(t) − S(t), Q(t)〉 (13)

According to Fact 1 (see (4)), we can decompose Λ as

follows: Λ =
K∑
n=1

αnMn, where K ≤ N2 − 2N + 2, αn > 0

for n = 1, 2, ...,K, and
K∑
n=1

αn ≤ ρ.

15

Hence, we have

〈Λ− ρ∗SQ(t), Q(t)〉

= 〈
K∑
n=1

αnMn − ρ∗SQ(t), Q(t)〉

= 〈
K∑
n=1

αnMn − ρ∗SQ(t), Q(t)〉 −
K∑
n=1

αnWQ(t) +

K∑
n=1

αnWQ(t)

=

K∑
n=1

αn
(
〈Mn, Q(t)〉 −WQ(t)

)
+ (

K∑
n=1

αn − ρ∗)WQ(t)

≤ (

K∑
n=1

αn − ρ∗)WQ(t) (14)

≤
(
ρ− 1

2
(1 + ρ)

)
WQ(t) (15)

≤ −
(1− ρ)WQ(t)

2
(16)

Inequality (14) holds because ∀1 ≤ n ≤ K we have αn > 0
and 〈Mn, Q(t)〉 −WQ(t) ≤ 0 (the weight of Mn is no more
than WQ(t), the weight of the MWM w.r.t. Q(t)) and (15)

is due to
K∑
n=1

αn ≤ ρ.

Since,

WQ(t) ≥ max
n=1,··· ,N2

qn(t)

≥
√
‖Q(t)‖22
N2

=
1

N

√
V1

(
Y (t)

)
(17)

From (12), (13), (16) and (17), we have

E
[
V1

(
Y (t+ 1)

)
− V1

(
Y (t)

)
| Y (t)

]
≤ − (1− ρ)

1

N

√
V1

(
Y (t)

)
+ 2〈ρ∗SQ(t) − S(t), Q(t)〉

+ E
[
‖A(t)− S(t)‖22 | Y (t)

]
≤ − ε1

√
V1

(
Y (t)

)
+ 2
√
V2

(
Y (t)

)
+ c1 (18)

Here ε1 = 1−ρ
N

, c1 = E
[
‖A(t) + 1‖22] and 1 is the vector

with all its elements equal to 1.

C.2 Proof of Lemma 4
By simple calculations, we have

E[V2

(
Y (t+ 1)

)
| Y (t)]

=P[E] · 0 + P[Ec] · E[V2

(
Y (t+ 1)

)
| Y (t), Ec] (19)

Here, E is the event
{
〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉 ≤ 0

}
,

and Ec is the complementary event of E .
Since algorithm π is (ε, δ)-MWM (see Definition 3), for

ε3 = 1− ρ∗ > 0, there exists δ > 0, such that,

P[Ec] = 1− P
[
〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉 ≤ 0

]
= 1− P

[
ρ∗WQ(t+1) −W (t+ 1) ≤ 0

]
= 1− P

[
W (t+ 1) ≥

(
1− (1− ρ∗)

)
WQ(t+1)

]
= 1− P

[
W (t+ 1) ≥

(
1− ε3

)
WQ(t+1)

]
≤ 1− δ (20)

Focusing on the second term in the RHS of (19), we have

E
[
V2

(
Y (t+ 1)

)
| Y (t), Ec

]
=E

[(
[〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉]+

)2 | Y (t), Ec
]

=E
[(
〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉

)2 | Y (t), Ec
]

≤E
[(
〈ρ∗SQ(t+1) − S(t+ 1), Q(t) +A(t)− S(t)〉

+N
)2 | Y (t), Ec

]
(21)

=E
[(
〈ρ∗SQ(t+1), Q(t)〉 − 〈S(t+ 1), Q(t)〉+N

+ 〈ρ∗SQ(t+1) − S(t+ 1), A(t)− S(t)〉
)2 | Y (t), Ec

]
(22)

Here, the term N in (21) is because

〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉
= 〈ρ∗SQ(t+1) − S(t+ 1), [Q(t) +A(t)− S(t)]+〉
= 〈ρ∗SQ(t+1) − S(t+ 1), Q(t) +A(t)− S(t)〉

+ 〈ρ∗SQ(t+1) − S(t+ 1),1{
Q(t)+A(t)−S(t)<0

}〉
≤〈ρ∗SQ(t+1) − S(t+ 1), Q(t) +A(t)− S(t)〉

+ 〈SQ(t+1),1{
Q(t)+A(t)−S(t)<0

}〉
≤ 〈ρ∗SQ(t+1) − S(t+ 1), Q(t) +A(t)− S(t)〉+N

Here, 1{
Q(t)+A(t)−S(t)<0

} is a vector whose nth element/scalar

takes value 1 if qn(t)+an(t)−sn(t) < 0, which happens only
when qn(t) = 0, an(t) = 0, sn(t) = 1 and value 0 otherwise.
The last inequality is because 〈SQ(t+1),1〉 ≤ N , where 1 is
the vector with all its elements equal to 1. In the following
proof steps, we will use similar tricks to remove [·]+, which
we may not elaborate again.

We now derive the following three inequalities that will
be needed to complete our proof.

First, we have

〈S(t+ 1), Q(t)〉
≥ 〈S(t+ 1), Q(t+ 1)−A(t) + S(t)〉 −N (23)

≥〈S(t), Q(t+ 1)〉 − 〈S(t+ 1), A(t)− S(t)〉 −N (24)

= 〈S(t), Q(t) +A(t)− S(t)〉+ 〈S(t),1{
Q(t)+A(t)−S(t)<0

}〉
− 〈S(t+ 1), A(t)− S(t)〉 −N

≥〈S(t), Q(t) +A(t)− S(t)〉 − 〈S(t+ 1), A(t)− S(t)〉 −N
= 〈S(t), Q(t)〉 − 〈S(t+ 1)− S(t), A(t)− S(t)〉 −N
= 〈S(t), Q(t)〉 − 〈S(t+ 1)− S(t), A(t)〉

+ 〈S(t+ 1)− S(t), S(t)〉 −N
≥〈S(t), Q(t)〉 − 〈1, A(t)〉 − 2N (25)

Here, the constant term N in (23) is due to the removal of
[·]+, and (24) is due to the fact that π is non-degenerative,
i.e., 〈S(t + 1), Q(t + 1)〉 ≥ 〈S(t), Q(t + 1)〉. The deriva-
tion of (25) uses the following two simple facts: 0 ≤ 〈S(t+
1), S(t)〉 ≤ N and 0 ≤ 〈S(t), S(t)〉 ≤ N .

Second, we have

〈SQ(t+1), Q(t)〉 ≤WQ(t) = 〈SQ(t), Q(t)〉 (26)

Third, we have

〈ρ∗SQ(t+1) − S(t+ 1), A(t)− S(t)〉
= 〈ρ∗SQ(t+1) − S(t+ 1), A(t)〉 − 〈ρ∗SQ(t+1) − S(t+ 1), S(t)〉
≤ 〈SQ(t+1), A(t)〉+ 〈S(t+ 1), S(t)〉
≤ 〈1, A(t)〉+N (27)

16

Now, according to (25), (26) and (27), we have, condi-
tioned upon the event Ec,

0 < 〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉
≤ 〈ρ∗SQ(t+1), Q(t)〉 − 〈S(t+ 1), Q(t)〉+N

+ 〈ρ∗SQ(t+1) − S(t+ 1), A(t)− S(t)〉
≤ 〈ρ∗SQ(t), Q(t)〉 −

(
〈S(t), Q(t)〉 − 〈1, A(t)〉

− 2N
)

+N +
(
〈1, A(t)〉+N

)
≤〈ρ∗SQ(t) − S(t), Q(t)〉+ 2〈1, A(t)〉+ 4N

≤
√
V2

(
Y (t)

)
+ 2
(
〈1, A(t)〉+ 2N

)
(28)

Therefore, we have

E
[
V2

(
Y (t+ 1)

)
| Y (t), Ec

]
≤V2

(
Y (t)

)
+ 4
(
E
[
〈1, A(t)〉 | Ec

]
+ 2N

)√
V2

(
Y (t)

)
+ 4E

[(
〈1, A(t)〉+ 2N

)2 | Ec] (29)

Since 〈1, A(t)〉 ≥ 0, we have,

E
[
〈1, A(t)〉 | Ec

]
P[Ec]

≤E
[
〈1, A(t)〉 | Ec

]
P[Ec] + E

[
〈1, A(t)〉 | E

]
P[E]

=E
[
〈1, A(t)〉

]
≤ ρN (30)

Here, ρ < 1 is the maximum normalized load imposed on
any input or output port as defined in (3).

Similarly, we have

E
[(
〈1, A(t)〉+ 2N

)2 | Ec]P[Ec]

≤E
[(
〈1, A(t)〉+ 2N

)2]
(31)

Substituting (20), (29), (30) and (31) into (19), we have

E[V2

(
Y (t+ 1)

)
| Y (t)]

≤(1− δ)V2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (32)

where c2 = 4(ρ+ 2)N , c3 = 4E
[(
〈1, A(t)〉+ 2N

)2]
.

Therefore, we have

E
[
V2

(
Y (t+ 1)

)
− V2

(
Y (t)

)
| Y (t)

]
≤− δV2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (33)

Hence, Lemma 4 holds with ε2 = δ.

C.3 Proof of Lemma 2
We now proceed to prove Lemma 2. Note that, the proof

is the same as the proof of Lemma 1 in [33]. We reproduce it
with some minor revisions for this paper to be self-contained.

By Lemma 3 (concerning the drift of V1(Y)) and Lemma 4
(concerning the drift of V2(Y)), the drift of V (Y) satisfies

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]
≤ − ε1

√
V1

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ε2V2

(
Y (t)

)
+ c1 + c3 (34)

When V
(
Y (t)

)
≥ B, we have V1

(
Y (t)

)
≥ B − V2

(
Y (t)

)
,

and hence

−ε1
√
V1

(
Y (t)

)
≤ − ε1

2

√
V1

(
Y (t)

)
− ε1

2

√
B − V2

(
Y (t)

)
(35)

Substituting the first term in the RHS of (34) by the RHS
of (35), we obtain

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]
≤ − ε1

2

√
V1

(
Y (t)

)
− ε1

2

√
B − V2

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ε2V2

(
Y (t)

)
+ c1 + c3 (36)

It is clear that when B is large enough, we have,

− ε1
2

√
B − V2

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ε2V2

(
Y (t)

)
+ c1 + c3 < 0

Hence,

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]
< − ε1

2

√
V1

(
Y (t)

)
= − ε1

2
‖Q(t)‖2 (37)

Hence Lemma 2 holds with ε = ε1
2

. Here ε1 = 1−ρ
N

as
specified in Lemma 3 (see (10)).

C.4 Proof of Theorem 2
To prove Theorem 2, we need a theorem due to Tweedie [35],

stated as follows.

Theorem 3 (Tweedie [35]). Suppose that {Yn}∞n=0 is
an aperiodic and irreducible Markov chain with countable
state space Y. Let f(Y), g(Y) be real nonnegative functions
such that g(Y) ≥ f(Y), Y ∈ Dc, where D is a finite subset
of Y. If

E
[
g(Y1) | Y0 = Y

]
<∞, Y ∈ D (38)

and

E
[
g(Y1) | Y0 = Y

]
< g(Y)− f(Y), Y ∈ Dc (39)

then the Markov chain is ergodic and

E
[
f(Ŷ)

]
<∞

where the random variable Ŷ has the steady state distribution
of the Markov chain {Yn}∞n=0.

Remarks: In the above theorem, Y0, Y1 can be replaced
by Yn, Yn+1, respectively, for any integer n ≥ 0, since {Yn}∞n=0

is a Markov chain.
Now, we can proceed to prove Theorem 2. Note that, the

proof of Theorem 2 here, using Lemma 2 and Theorem 3, is
mostly the same as in [33].

Let Yt = Y (t) =
(
Q(t), S(t)

)
. Then Yt is an irreducible

and aperiodic Markov chain (explained in Appendix C). De-
fine f, g : Y → R+ be such that

g(Y) = V (Y), f(Y) =
ε1
2
‖Q‖2

where Y = (Q,S) and ε1 = 1−ρ
N

which is the same as in

(37). Let Dc =
{
Y : V (Y) > B

}
, for B specified in the

proof of Lemma 2. It is clear that (38) holds from the def-
inition of Dc. By Lemma 2 (note ε = ε1

2
in Lemma 2),

Inequality (39) also holds (by replacing Yt and Yt+1 in (9)
by Y0 and Y1 respectively). By Theorem 3, we have that
the Markov chain Y (t) =

(
Q(t), S(t)

)
converges in distri-

bution to Ŷ = (Q̂, Ŝ), and that E
[
f(Ŷ)

]
< ∞. Therefore,

E
[
‖Q̂‖2

]
= 2

ε1
E
[
f(Ŷ)

]
<∞.

17

Given any outcome ω, the (deterministic) N2-dimensional
vector satisfies

‖Q̂(ω)‖1 ≤ N‖Q̂(ω)‖2

by the Cauchy-Schwarz inequality.
Therefore, by the Dominated Convergence Theorem, we

have

E
[
‖Q̂‖1

]
≤ NE

[
‖Q̂‖2

]
<∞

This completes the proof of Theorem 2.

D. PROOF OF Lemma 1
Let Q be the VOQ length vector at the current time t; we

do not use the notation Q(t) here because the proof does not
involve the term t. Let SQ be a maximum weight matching
w.r.t. Q, and let WQ denote its weight. Given any ε > 0,
we derive another matching S′ ⊆ SQ from SQ as follows:
remove every edge (i.e., VOQ) from SQ whose weight (i.e.,
VOQ length) is less than ε

N
WQ. Since there can be at most

N edges in any matching, the weight of S′ satisfies 〈S′, Q〉 ≥
WQ −N · εNWQ > (1− ε)WQ.

Recall that in the proposing phase, QPS samples a set of
edges (not necessarily a matching), which we denote as U .
Next, we prove that, U contains all edges in S′ (i.e., S′ ⊆ U)
with at least a constant (i.e., not as a function of Q) prob-

ability δ =
(
ε
N2

)N
. Given any edge e = (i, j) ∈ S′ (i.e.,

jth VOQ at input port i), its weight is at least ε
N
WQ since

all edges lighter than that would have been removed earlier.
Since the weight of any edge can be at most WQ, the total
weight of all edges (VOQs) incident on vertex (input port)
i is at most NWQ. Hence the probability that this edge
e = (i, j) (i.e., output port j) is sampled by input port i in
the QPS proposing phase is at least (ε

N
WQ)/(NWQ) = ε

N2 .
Since every input port makes the sampling decision indepen-
dently, the probability that all edges in S′ are sampled dur-

ing the QPS proposing phase is at least
(
ε
N2

)|S′| ≥ (ε
N2

)N
,

where |S′| is the number of edges in S′.
Now suppose the event S′ ⊆ U happens during the QPS

proposing phase. We show that the final matching accepted
by the output ports, during the QPS accepting phase, is at
least as heavy as S′. This is however clear from the following
two facts. First, given any edge e = (i, j) ∈ S′, it is either
accepted by output port j or beaten by another edge (i.e.,
proposal) e′ to output port j that has a heavier (or equal)
weight (VOQ length). Second, when the latter happens,
since S′ is a matching, e′ will not compete with (and beat)
any edge in S′ other than e.
Remark. Lemma 1 continues to hold if the “longest VOQ
first” accepting strategy is replaced by the aforementioned
proportional accepting (PA) strategy (see §3.1). Let E be
the event that S′ is contained in the final matching. To
prove this remark, it suffices to show that there is a constant
(i.e., not as a function of Q) probability for E to happen,
conditioned upon the happening of the event S′ ⊆ U . Using
the same argument as above for proving that the event S′ ⊆
U happens with a probability that is at least

(
ε
N2

)N
, we can

prove that E happens conditionally with a probability that

is at least
(
ε
N2

)N
.

E. MORE SIMULATION RESULTS

E.1 Mean Delay Performance for FQPS
Here, we consider several alternative functions f(·) of the

queue lengths for FQPS, besides the VOQ lengths (i.e.,
f(x) = x) used in QPS, to see if they can deliver better
mean delay performance than QPS. We present the simula-
tion results for two types of functions:

1. f(x) = xα for α = 2, 3, 4,∞: inspired by the functions
considered in MWM-α [14], and

2. f(x) = log(x+ 1): inspired by the log-weights used in
MWM-0+ [32].

The case α = ∞ is an extreme case in which each input
port samples the longest VOQ (with ties broken uniformly
randomly) and proposes to the corresponding output port.

Figure 6 presents the mean delays of FQPS-augmented
scheduling algorithms under the 4 load matrices and a range
of normalized loads. By selecting a proper α, we can in-
deed achieve marginal improvements (e.g., when α = 2, 3, 4).
However, when α → ∞, the mean delay increases dramati-
cally when the load is high. This is not surprising because at
high loads, a high α strategy severely penalizes short VOQs
by blocking them from being serviced until they themselves
become long enough, resulting in poor delay performance.
Furthermore, the mean delays of the scheduling algorithms
are similar when the load is light, but as the load increases,
the performance gaps between the FQPS-augmented algo-
rithms with different α values increase (though the differ-
ences remain small). Surprisingly, unlike MWM-α where
mean the delay increases as α increases [14], for FQPS, the
relationship between the mean delay and α is not so straight-
forward. On one hand, the mean delay performance is gen-
erally slightly better in cases α = 2, 3, 4 than that in QPS
(i.e., α = 1). On the other hand, in the case α = ∞, the
mean delay performance becomes much worse than that in
QPS.

We also see that, unlike in MWM-0+ [32], using f(x) =
log(x + 1) for FQPS actually increases the mean delay, as
compared to QPS. The reason for this is that the use of the
log(·) weight function results in the probabilities of sam-
pling the longer VOQs being very close to those of sampling
the shorter queues. Such an almost weight-oblivious way of
sampling intuitively does not yield good performance.

While there is slight improvement in mean delay for prop-
erly selected α under all load matrices, from Figure 6, we
see that the difference between QPS-Serena (QPS-iSLIP)
and the FQPS-Serena (FQPS-iSLIP) is, at best, marginal.
Implementing FQPS, however, requires more complex data
structures (and more space), such as a binary search tree.
Such an implementation requires O(logN) (per packet) time
complexity for the operations (insertion, deletion, etc.). In
contrast, the O(1) complexity of QPS makes it a far more
attractive and practical solution. To summarize, all fac-
tors considered, QPS offers the best tradeoff between per-
formance and computational/implementation complexities
within the FQPS family.

E.2 How Mean Delay Scales with N

In the section, we investigate how the mean delays for
QPS-augmented scheduling algorithms scale with the num-
ber of input/output ports N . We have simulated four dif-
ferent N values: N = 16, 32, 64, 128.

Figure 7 (the 1st row) shows the mean delays for QPS-
iSLIP, iSLIP, iSLIP-ShakeUp, iLQF, and MWM under the

18

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform

log(Q+ 1)PS-iSLIP QPS-iSLIP Q2PS-iSLIP Q3PS-iSLIP Q4PS-iSLIP Q∞PS-iSLIP

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10
-2

10
-1

10
0

10
1

Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform

log(Q+ 1)PS-Serena QPS-Serena Q2PS-Serena Q3PS-Serena Q4PS-Serena Q∞PS-Serena

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Diagonal

Figure 6: Mean delays for different FQPS-iSLIP and FQPS-Serena under Bernoulli i.i.d. traffic arrivals with the 4 load matrices.

16 32 64 128

Number of Ports

20

21

22

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

16 32 64 128

Number of Ports

20

21

22

23
Quasi-diagonal

16 32 64 128

Number of Ports

20

21

22
Log-diagonal

16 32 64 128

Number of Ports

2 -1

20

21
Diagonal

16 32 64 128

Number of Ports

10 0

10 1

10 2

10 3

10 4

10 5

M
e
a
n
 D

e
la

y

Uniform
Serena QPS-Serena MWM

16 32 64 128

Number of Ports

10 0

10 1

10 2

10 3

10 4

10 5
Quasi-diagonal

16 32 64 128

Number of Ports

10 0

10 1

10 2
Log-diagonal

16 32 64 128

Number of Ports

10 0

10 1

10 2

10 3
Diagonal

Figure 7: Mean delays versus number of ports for different scheduling algorithms under Bernoulli i.i.d. traffic arrivals with the 4 load
matrices.

19

normalized load of 0.75 (some algorithms are not stable un-
der load factor 0.8) and the 4 different load matrices. From
Figure 7, we can see that all four scheduling algorithms scale
quite well under all 4 load matrices: In every case, the mean
delay nearly remains constant when N increases.

In Figure 7 (both rows), the mean delay of MWM (under
0.75 load in the 1st row and 0.95 load in the 2nd row) is
nearly a constant w.r.t. N . This scaling behavior of MWM
to a certain degree confirms a theoretical result proved in
[30]. It states that the average total queue length (across all
N input ports) under an optimal algorithm (e.g., MWM)
scales linearly with N as N

1−ρ , where ρ ∈ (0, 1) is the load
factor. Suppose this total average queue length is further-
more nearly evenly distributed across the N input ports by
an optimal algorithm, the mean delay (proportional to the
average per-port queue length in the steady state) is ex-
pected to be nearly constant when N increases.

Figure 7 (the 2nd row) shows the mean delays for QPS-
Serena against Serena and MWM under the normalized load
of 0.95 and the 4 different load matrices. As we can see,
QPS-Serena outperforms Serena and the gap increases when
N increases, under all load matrices except the quasi-diagonal.
In addition, under the log-diagonal and the diagonal load
matrices, both QPS-Serena and Serena achieve near-optimal
scaling (i.e., nearly constant as a function of N) of mean de-
lay, whereas under the uniform and the quasi-diagonal load
matrices, the mean delay grows roughly quadratically with
N (i.e., O(N2) scaling).

E.3 “Longest VOQ First” vs. Proportional Ac-
cepting

In this section, we compare the performance between the
two different accepting strategies we proposed in §3.1: “longest
VOQ first” and proportional accepting (PA). Figure 8 com-
pares QPS-iSLIP with the 2 different accepting strategies
(the 1st row) and QPS-Serena with the 2 different accept-
ing strategies (the 2nd row), in terms of mean delay, under
Bernoulli i.i.d. traffic arrivals with the 4 different load ma-
trices. Similarly, in Figure 9, the 1st row compares QPS-
iSLIP with the 2 different accepting strategies under bursty
traffic arrivals with an offered load of 0.75, and the 2nd row
compares QPS-Serena with the 2 different accepting strate-
gies under bursty traffic with an offered load of 0.95. Fig-
ure 8 and Figure 9 show that PA results in either slightly
worse or similar mean delay performances than“longest VOQ
first” in all these scenarios.

E.4 QPS vs. O(1) Algorithm in [38]
Figure 10 compares QPS-iSLIP and QPS-Serena against

the O(1) scheduling algorithm in [38], in terms of mean de-
lay, under Bernoulli i.i.d. traffic arrivals with the 4 different
load matrices. Figure 10 clearly shows that the mean delays
of the O(1) algorithm in [38] are between 3 and 4 orders of
magnitudes larger than those of QPS-iSLIP and QPS-Serena
under all workload conditions. Note that in Figure 10, only
mean delays under offered loads ≤ 0.8 (and ≤ 0.6 for quasi-
diagonal load matrices) are reported for the O(1) algorithm
in [38], because its simulation could not reach the steady
state within a reasonable amount of time, when the of-
fered load is higher than that. As explained earlier, this
phenomenon is expected, because such Glauber Dynamics
based scheduling algorithms converge to the steady state
very slowly when the number of ports (or wireless nodes) N

is large and the traffic load is high [9]. Indeed, for the O(1)
algorithm to converge under an offered load of just 0.8, we
had to increase the number of time slots in the simulation
to at least 20000×N2, which is more than three times that
was necessary for any other simulation run.

20

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP (with "longest VOQ first") QPS-iSLIP (with proportional accepting)

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform
QPS-Serena (with "longest VOQ first") QPS-Serena (with proportional accepting)

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Diagonal

Figure 8: Mean delays for QPS-iSLIP and QPS-Serena with the 2 different accepting strategies under Bernoulli i.i.d. traffic arrivals
with the 4 load matrices.

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP (with "longest VOQ first") QPS-iSLIP (with proportional accepting)

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Diagonal

1 4 16 64 256 1024

Average Burst Size

10 2

10 3

10 4

10 5

M
e
a
n
 D

e
la

y

Uniform
QPS-Serena (with "longest VOQ first") QPS-Serena (with proportional accepting)

1 4 16 64 256 1024

Average Burst Size

10 2

10 3

10 4

10 5
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Diagonal

Figure 9: Mean delays for QPS-iSLIP (offered load: 0.75) and QPS-Serena (offered load: 0.95) with the 2 different accepting strategies
under bursty traffic arrivals with the 4 load matrices.

21

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP QPS-Serena O(1)

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6
Quasi-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6
Log-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5
Diagonal

Figure 10: Mean delay for QPS-iSLIP/QPS-Serena against O(1) algorithm in [38] under Bernoulli i.i.d. traffic arrivals with the 4
load matrices.

22

	Introduction
	Starter Matching and Its Importance
	Queue-Proportional Sampling (QPS)

	Background
	Input-Queued Crossbar Architecture
	Performance Metrics
	Admissible Traffic Patterns

	Queue-Proportional Sampling
	The QPS Proposing Strategy
	Augmenting iSLIP and Serena
	iSLIP, QPS-iSLIP, and iLQF
	Serena and QPS-Serena

	QPS vs. ShakeUp

	QPS Implementation
	Overview of the Sampling Algorithm
	The Detailed Data Structure

	Stability Proof of QPS-Serena
	Background and Notations
	TASS, Serena, and Their Stability
	The Adaptive and Non-Degenerative Family
	Generalized Algorithm Family
	Stability Theorem for Family

	Stability of QPS-Serena

	Evaluation
	Simulation setup
	QPS Throughput Results
	QPS Delay Performance Results
	Bernoulli arrivals
	Bursty arrivals

	Related Work
	Crossbar Scheduling Algorithms
	Belief Propagation Algorithms
	MVM and LHPF
	Lower-Complexity Randomized Algorithms

	Queue-Proportional Resource Allocation

	Conclusion
	References
	QPS Variants
	Space complexity of QPS
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 2
	Proof of Theorem 2

	Proof of Lemma 1
	More Simulation Results
	Mean Delay Performance for FQPS
	How Mean Delay Scales with N
	``Longest VOQ First'' vs. Proportional Accepting
	QPS vs. O(1) Algorithm in Ye10Variable

