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Outline
• What is Deep Learning, the field, about?

– Highlight of some recent projects from my lab

• What is this class about? 

• What to expect? 
– Logistics

• FAQ
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What is Deep Learning?

Some of the most exciting 
developments in 

Machine Learning, 
Vision, NLP, Speech, Robotics 

& AI in general

in the last 5 years!

(C) Dhruv Batra 4



Proxy for public interest
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1000 object classes         1.4M/50k/100k images

Person

Dalmatian

http://image-net.org/challenges/LSVRC/{2010,…,2015}
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Image Classification



Image Classification
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AlphaGo vs Lee Sedol
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Tasks are getting bolder
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A group of young people 
playing a game of Frisbee

Antol et al., 2015

Vinyals et al., 2015

Das et al., 2017



Visual Question Answering (VQA)
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Visual Dialog
[CVPR ‘17]

Abhishek Das
(Georgia Tech)

Satwik Kottur
(CMU)

Avi Singh
(UC Berkeley)

Khushi Gupta
(CMU)

Deshraj Yadav
(Virginia Tech)

José Moura
(CMU)

Devi Parikh
(Georgia Tech / FAIR)

Dhruv Batra
(Georgia Tech / FAIR)
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A man and a woman are holding umbrellas
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A man and a woman are holding umbrellas

What color is his umbrella?



(C) Dhruv Batra 20

man

his
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umbrella
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A man and a woman are holding umbrellas

What color is his umbrella?
His umbrella is black
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A man and a woman are holding umbrellas

What color is his umbrella?
His umbrella is black

What about hers?
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woman

her
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umbrella
umbrella

hers
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A man and a woman are holding umbrellas

What color is his umbrella?
His umbrella is black

What about hers?

Hers is multi-colored
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A man and a woman are holding umbrellas

What color is his umbrella?
His umbrella is black

What about hers?

Hers is multi-colored

How many other people are in the image?
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man and a woman

other people
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A man and a woman are holding umbrellas

What color is his umbrella?
His umbrella is black

What about hers?

Hers is multi-colored

How many other people are in the image?

I think 3. They are occluded
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A man and a woman are holding umbrellas

What color is his umbrella?
His umbrella is black

What about hers?

Hers is multi-colored

How many other people are in the image?

I think 3. They are occluded

How many are men?
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man and a woman

other people

3

How many are men?



Live demo at

vqa.cloudcv.org.

demo.visualdialog.org
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Embodied Question Answering
[CVPR ’18 Oral]

Abhishek Das
(Georgia Tech)

Samyak Datta
(Georgia Tech)

Devi Parikh
(Georgia Tech / FAIR)

Dhruv Batra
(Georgia Tech / FAIR)Stefan Lee

(Georgia Tech)

Georgia Gkioxari
(FAIR)
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What is to the left of the shower?

Cabinet



What color is the car? – AI Challenges

• Language Understanding
– What is the question asking?

• Vision
– What does a ‘car’ look like?

• Active Perception
– Agent must navigate by perception

• Common sense
– Where are ‘cars’ generally located in the house?

• Credit Assignment
– (forward, forward, turn-right, forward, . . . , turn-left, ‘red’) 
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So what is Deep (Machine) Learning?
• Representation Learning

• Neural Networks

• Deep Unsupervised/Reinforcement/Structured/
<insert-qualifier-here> 
Learning

• Simply: Deep Learning
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So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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45

\ˈd  ē  p\

fixed learned

your favorite
classifier

hand-crafted
features

SIFT/HOG
“car”

“+”
This burrito place
is yummy and fun!

VISION

SPEECH

NLP

Traditional Machine Learning

fixed learned

your favorite
classifier

hand-crafted
features

MFCC

fixed learned

your favorite
classifier

hand-craCed
features

Bag-of-words

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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VISION

SPEECH

NLP

pixels edge texton motif part object

sample spectral 
band

formant motif phone word

character NP/VP/.. clause sentence storyword

Hierarchical Compositionality

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Building A Complicated Function

Given a library of simple functions

Compose into a

complicate function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Building A Complicated Function

Given a library of simple functions

Compose into a

complicate function

Idea 1: Linear Combinations
• Boosting

• Kernels

• …

f(x) =
X

i

↵igi(x)

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Building A Complicated Function

Given a library of simple functions

Compose into a

complicate function

Idea 2: Compositions
• Deep Learning

• Grammar models

• Scattering transforms…

f(x) = g1(g2(. . . (gn(x) . . .))

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Building A Complicated Function

Given a library of simple functions

Compose into a

complicate function

Idea 2: Compositions
• Deep Learning

• Grammar models

• Scattering transforms…

f(x) = log(cos(exp(sin3(x))))

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Deep Learning = Hierarchical Compositionality

“car”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

“car”

Deep Learning = Hierarchical Compositionality

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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\ˈd  ē  p\

fixed learned

your favorite
classifier

hand-crafted
features

SIFT/HOG
“car”

“+”
This burrito place
is yummy and fun!

VISION

SPEECH

NLP

Traditional Machine Learning

fixed learned

your favorite
classifier

hand-crafted
features

MFCC

fixed learned

your favorite
classifier

hand-craCed
features

Bag-of-words

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Feature Engineering
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SIFT Spin Images

HoG Textons

and many many more….



fixed unsupervised supervised

classifier
Mixture of
Gaussians

MFCC \ˈd  ē  p\

fixed unsupervised supervised

classifier
K-Means/

pooling
SIFT/HOG “car”

fixed unsupervised supervised

classifiern-grams
Parse Tree
Syntactic “+”

This burrito place

is yummy and fun!

VISION

SPEECH

NLP

Traditional Machine Learning (more accurately)
“Learned”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun(C) Dhruv Batra 59



fixed unsupervised supervised

classifier
Mixture of
Gaussians

MFCC \ˈd  ē  p\

fixed unsupervised supervised

classifier
K-Means/

pooling
SIFT/HOG “car”

fixed unsupervised supervised

classifiern-grams
Parse Tree
Syntactic “+”

This burrito place
is yummy and fun!

VISION

SPEECH

NLP

Deep Learning = End-to-End Learning
“Learned”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun(C) Dhruv Batra 60



• “Shallow” models

• Deep models

Trainable
Feature-

Transform / 
Classifier

Trainable
Feature-

Transform / 
Classifier

Trainable
Feature-

Transform / 
Classifier

Learned Internal Representations

“Shallow” vs Deep Learning

“Simple” Trainable 

Classifier

hand-crafted

Feature Extractor
fixed learned

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Distributed Representations Toy Example
• Local vs Distributed
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Distributed Representations Toy Example
• Can we interpret each dimension?
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Power of distributed representations!
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Local

Distributed

Slide Credit: Moontae Lee 



Power of distributed representations!
• United States:Dollar :: Mexico:?
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ThisPlusThat.me
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Image Credit:

http://insightdatascience.com/blog/thisplusthat_a_search_engine_that_lets_you_add_words_as_vectors.html



So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Benefits of Deep/Representation Learning

• (Usually) Better Performance
– “Because gradient descent is better than you”

Yann LeCun

• New domains without “experts”
– RGBD

– Multi-spectral data
– Gene-expression data
– Unclear how to hand-engineer
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“Expert” intuitions can be misleading

• “Every time I fire a linguist, the performance of our 
speech recognition system goes up”
– Fred Jelinik, IBM ’98

(C) Dhruv Batra 71



Benefits of Deep/Representation Learning
• Modularity! 
• Plug and play architectures!
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Any DAG of differentialble modules is 
allowed!

Differentiable Computation Graph

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 73
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Logistic Regression as a Cascade

(C) Dhruv Batra 75

Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w|x

◆

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Logistic Regression as a Cascade
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Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w|x

◆

w
|
x

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Key Computation: Forward-Prop
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Key Computation: Back-Prop

(C) Dhruv Batra 78Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Any DAG of differentialble modules is 
allowed!

Differentiable Computation Graph

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 79



Visual Dialog Model #1

Late Fusion Encoder

Slide Credit: Abhishek Das
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Visual Dialog Model #1
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Visual Dialog Model #1

Late Fusion Encoder

Slide Credit: Abhishek Das



Visual Dialog Model #1

Late Fusion Encoder

Slide Credit: Abhishek Das



Problems with Deep Learning
• Problem#1: Non-Convex! Non-Convex! Non-Convex!

– Depth>=3: most losses non-convex in parameters
– Theoretically, all bets are off

– Leads to stochasticity
• different initializations à different local minima

• Standard response #1
– “Yes, but all interesting learning problems are non-convex”
– For example, human learning

• Order matters à wave hands à non-convexity

• Standard response #2
– “Yes, but it often works!”
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Problems with Deep Learning
• Problem#2: Lack of interpretability

– Hard to track down what’s failing
– Pipeline systems have “oracle” performances at each step
– In end-to-end systems, it’s hard to know why things are not 

working 
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Problems with Deep Learning
• Problem#2: Lack of interpretability

(C) Dhruv Batra 90End-to-EndPipeline

[Fang et al. CVPR15] [Vinyals et al. CVPR15]



Problems with Deep Learning
• Problem#2: Lack of interpretability

– Hard to track down what’s failing
– Pipeline systems have “oracle” performances at each step
– In end-to-end systems, it’s hard to know why things are not 

working 

• Standard response #1
– Tricks of the trade: visualize features, add losses at different 

layers, pre-train to avoid degenerate initializations… 
– “We’re working on it” 

• Standard response #2
– “Yes, but it often works!”
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Problems with Deep Learning
• Problem#3: Lack of easy reproducibility

– Direct consequence of stochasticity & non-convexity 

• Standard response #1
– It’s getting much better
– Standard toolkits/libraries/frameworks now available
– Caffe, Theano, (Py)Torch

• Standard response #2
– “Yes, but it often works!”
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Yes it works, but how?
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Outline
• What is Deep Learning, the field, about?

– Highlight of some recent projects from my lab

• What is this class about? 

• What to expect? 
– Logistics

• FAQ
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What is this class about?
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What was F17 DL class about?
• Firehose of arxiv
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Arxiv Fire Hose
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PhD Student

Deep 
Learning 
papers



What was F17 DL class about?
• Goal: 

– After taking this class, you should be able to pick up the 
latest Arxiv paper, easily understand it, & implement it. 

• Target Audience: 
– Junior/Senior PhD students who want to 

conduct research and publish in Deep Learning. 

(think ICLR/CVPR papers as outcomes)
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What is the F18 DL class about?
• Introduction to Deep Learning

• Goal: 
– After finishing this class, you should be ready to get started 

on your first DL research project. 
• CNNs
• RNNs
• Deep Reinforcement Learning
• Generative Models (VAEs, GANs)

• Target Audience: 
– Senior undergrads, MS-ML, and new PhD students
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What this class is NOT
• NOT the target audience: 

– Advanced grad-students already working in ML/DL areas

– People looking to understand latest and greatest cutting-
edge research (e.g. GANs, AlphaGo, etc)

– Undergraduate/Masters students looking to graduate 
with a DL class on their resume.

• NOT the goal: 
– Teaching a toolkit. “Intro to TensorFlow/PyTorch”
– Intro to Machine Learning
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Caveat
• This is an ADVANCED Machine Learning class

– This should NOT be your first introduction to ML
– You will need a formal class; not just self-reading/coursera

– If you took CS 7641/ISYE 6740/CSE 6740 @GT, 
you’re in the right place

– If you took an equivalent class elsewhere, see list of topics 
taught in CS 7641 to be sure.
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Prerequisites
• Intro Machine Learning

– Classifiers, regressors, loss functions, MLE, MAP

• Linear Algebra
– Matrix multiplication, eigenvalues, positive semi-definiteness…

• Calculus
– Multi-variate gradients, hessians, jacobians… 

(C) Dhruv Batra 103



Prerequisites
• Intro Machine Learning

– Classifiers, regressors, loss functions, MLE, MAP

• Linear Algebra
– Matrix multiplication, eigenvalues, positive semi-definiteness…

• Calculus
– Multi-variate gradients, hessians, jacobians… 

(C) Dhruv Batra 104



Prerequisites
• Intro Machine Learning

– Classifiers, regressors, loss functions, MLE, MAP

• Linear Algebra
– Matrix multiplication, eigenvalues, positive semi-definiteness…

• Calculus
– Multi-variate gradients, hessians, jacobians… 

• Programming!
– Homeworks will require Python, C++!
– Libraries/Frameworks: PyTorch
– HW0 (pure python), HW1 (python + PyTorch), 

HW2+3 (PyTorch)
– Your language of choice for project
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Course Information
• Instructor: Dhruv Batra 

– dbatra@gatech
– Location: 219 CCB
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Machine Learning & Perception Group

(C) Dhruv Batra 

Dhruv Batra
Assistant Professor

Stefan Lee

Research Scientist



TAs
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Michael Cogswell

3rd year CS PhD 
student

http://mcogswell.io/

Erik Wijmans

2nd year CS PhD 
student

http://wijmans.xyz/

Nirbhay Modhe

2nd year CS PhD 
student

https://nirbhayjm.gith
ub.io/

Harsh Agrawal

1st year CS PhD 
student

https://dexter1691.gi
thub.io/

http://mcogswell.io/
http://wijmans.xyz/
https://nirbhayjm.github.io/
https://dexter1691.github.io/


TA: Michael Cogswell
• PhD student working with Dhruv

• Research work/interest:
– Deep Learning 
– applications to Computer Vision and AI

• I also Fence (mainly foil)
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PhD student in CS

Research Interests

Scene Understanding

Embodied Agents

3D Computer Vision

TA: Erik Wijmans



2nd Year PhD Student

Research Interests:

- Visual Dialog

- Bayesian Machine Learning
- Generative Modeling

TA: Nirbhay Modhe



TA: Harsh Agrawal
• 1st year CS PhD student
• Previously at Snapchat Research
• Research at the intersection of 

vision and language

113
Sorting jumbled story elements into 

coherent story



Organization & Deliverables
• 4 homeworks (80%)

– Mix of theory and implementation
– First one goes out next week

• Start early, Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early

• Final project (20%)
– Projects done in groups of 3-4

• (Bonus) Class Participation (5%)
– Contribute to class discussions on Piazza
– Ask questions, answer questions
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Late Days
• “Free” Late Days

– 7 late days for the semester 
• Use for HWs
• Cannot use for project related deadlines

– After free late days are used up:
• 25% penalty for each late day
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HW0

• Out today; due Sept 5 (09/05)

– Available on class webpage + Canvas

• Grading

– <=80% means that you might not be prepared for the class

• Topics

– PS: probability, calculus, convexity, proving things

– HW: Implement training of a soft-max classifier via SGD
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Project
• Goal

– Chance to try Deep Learning
– Encouraged to apply to your research (computer vision, NLP, 

robotics,…)
– Must be done this semester. 
– Can combine with other classes 

• get permission from both instructors; delineate different parts
– Extra credit for shooting for a publication

• Main categories
– Application/Survey

• Compare a bunch of existing algorithms on a new application domain of 
your interest

– Formulation/Development
• Formulate a new model or algorithm for a new or old problem

– Theory
• Theoretically analyze an existing algorithm
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Computing
• Major bottleneck

– GPUs

• Options
– Your own / group / advisor’s resources

– Google Cloud Credits
• $50 credits to every registered student courtesy Google

– Minsky cluster in IC
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4803 vs 7643
• Level differentiation

• HWs
– Extra credit questions for 4803 students, necessary for 7643

• Project
– Higher expectations from 7643
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Outline
• What is Deep Learning, the field, about?

– Highlight of some recent projects from my lab

• What is this class about? 

• What to expect? 
– Logistics

• FAQ
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Waitlist / Audit / Sit in
• Waitlist

– Class is full. Size will not increase further. 
– Do HW0. Come to first few classes.
– Hope people drop.

• Audit or Pass/Fail
– We will give preference to people taking class for credit.

• Sitting in
– Talk to instructor.
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Re-grading Policy
• Homework assignments

– Within 1 week of receiving grades: see the TAs

• This is an advanced grad class. 
– The goal is understanding the material and making progress 

towards our research. 
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Collaboration Policy
• Collaboration

– Only on HWs and project (not allowed in HW0).
– You may discuss the questions
– Each student writes their own answers
– Write on your homework anyone with whom you collaborate
– Each student must write their own code for the programming 

part

• Zero tolerance on plagiarism
– Neither ethical nor in your best interest
– Always credit your sources
– Don’t cheat. We will find out. 
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Communication Channels
• Primary means of communication -- Piazza

– No direct emails to Instructor unless private information
– Instructor/TAs can provide answers to everyone on forum
– Class participation credit for answering questions!
– No posting answers. We will monitor.

• Staff Mailing List
– cs4803-7643-f18-staff@googlegroups.com

• Links:
– Website: www.cc.gatech.edu/classes/AY2019/cs7643_fall/
– Piazza: piazza.com/gatech/fall2018/cs48037643
– Canvas: gatech.instructure.com/courses/28059
– Gradescope: gradescope.com/courses/22096
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Todo
• HW0

– Due Wed Sept 5 11:55pm
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Welcome
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