CS 4803/ 7643: Deep Learning

Topics:
— Visualizing CNNs

Dhruv Batra
Georgia Tech



Recap from last time
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Learnable Upsampling:\Transpose Convolution}

Recall: Normal 3 x 3 convolution, stride 1 pad 1

[t

Dot product
between filter
and input

Input: z X 4! Outputi 4x4 i

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

T .

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

% j;) S
Input gives

weight for
filter

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

] 2

f__/

Input: 2 x 2

Slide Credit: Fei-Fei Li, Justi

Input gives
weight for
filter

)

Sum where
output overlaps

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

pnnson, Serena Yeung, CS 231n



Transpose Convolution: 1D Example

Input

Output

Filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2X input




In-Network upsampling: “Unpooling”

|
Nearest Neighbof 0
11)2 0
~| —»
3|4 0
0
Input; 2 x 2 Output; 4 x 4 Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation ldea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4%

Unpooling or_strided

Pooling, strided transpose convolution

convolution

S Low-res:

PR \O Dy x Hid x WIE— ﬁ/

Input: High-resv;w/@'\ High-res: Predictions:
3xHXW  D,xH2x D, x H/2 x W/2 oy W

———

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semani##Fs
Noh et al, “Learning Deconvolution Network for Semantic Segmentafj#n”,

] "

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

—



Why this operation?
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What is/deconvolutionf?

Non blind) Deconvolution

E o X k2

(C) Dhruv Batra 11



What is deconvolution®

- =
* (Non-blind) Deconvolution LQ IS
(\ V\)/’[’, OJ')}
we'| [0 ... 0 0 Ty

j&/*‘“ %:_3_(\2./ fg—( 0w
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What doesr“deconvolution” have to do with f‘t@nsposed ,CgmLoJJ.liion"?

I~ e}
—— A

B{ R
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e
“transposed convolution™ is a convolution!

We can express convolution in
terms of a matrix multiplication

rxa=Xa
] [0
Jz y = 0 0 Offa [ ay+bz |
0O z y 2z 0 O b"_ ar + by + cz
0 0 z y 2z 0 c,,_ br 4 cy =+ dz
0 0 0 =z y z]||df | cr+dy |
—~ 0

Example: 1D conv, kernel
size=3, stride=1, padding=1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



“transposed convolution” is a convolution!

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multlpllcatlon transpose of the same matrix:

@*a J_Ja f*TFL‘:@

M—/—/( 0 O I !am! ]

RE; y z 0 0 ONa [ ay+bz 0 O N\a lay—l— T

10Naz_—y—2 0 Of{b| lax+by+cz zZMydzl 0] |b]  |az+by+cx

0 r_ y = Of|lc|  |bx+cy+dz 0 1z zl| [c| = |[bz+cy+dr

0 0 ONz_y_z|d | cx+dy 0 0 z |d cz + dy
0 0 0 0 -

size=3, stride=1, padding=1

‘ N
23 |V i L dz 1
L/j)'("‘gxample 1D conv, kernel — -
[Z s\ XJ

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



I
“transposed convolution™” is a convolution!

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
r+xd=Xd s+l d=X"a
] _[o] x 0 0 O] i ax 1
x y z 0 0 Offa [ ay+bz | y 0 0] |a ay + bz
O =z y 2z 0 O|{p| |axz+by+ecz z y x 0f|b] |az+by+cx
0 0 = y 2 O0]]c bx +cy + dz 0 2z y x| |c| |bz4+cy+dx
00 0 = y z||d | cx+dy 0 0 z y| |d cz + dy
0 0 0 0 =z | dz
Example: 1D conv, kernel When stride=1, convolution transpose is
size=3, stride=1, padding=1 just a regular convolution (with different

padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

Wlizing CNNs}

(C) Dhruv Batra

Visualizing filters

Last layer embeddings
Visualizing activations
Maximally activating patches
Occlusion maps

Salient or “important” pixels
» Gradient-based visualizations

How to evaluate visualizations?

Creating “prototypical” images for a class
Creating adversarial images

Deep dream

Feature inversion

17




What's going on inside ConvNets?

s5ag \dense

128 204 2048

‘ - Class Scores:
1000 numbers

13 dense | |dense]
1000
128 Max

Max 58 Max pooling 204 2048
pooling ¢ pooling

Input Image:
3 x224 x 224

What are the intermediate features looking for?

-

Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

-=0|l‘ ' ~4
"-sqle _
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ResNet-18: ResNet-101: DenseNet-121:
64 x3x7x7 64 x3x7x7 64 x3x7x7

& N
5 o
Ny 7
n
@
S
~
~
N

64 x 3 x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualize the
filters/kernels
(raw weights)

We can visualize
filters at higher
layers, but not
that interesting

(these are taken
from ConvNetJS

CIFAR-10
demo)

Weights: .
CETTAS T L R - layer 1 weights
Weights: 16K 3XT7 X7

(AERE RN R AR (IS ENAC N AV S SRS (PN ECRD

S rLMENIEE YY) SN EEETE A
BH)EMSIRRANYEE RS K )(SEIE LA BN AR R AN
ANLAANIeTE)(EE AN SRS TS e ) NAS RN R AN

O ) 5 e 5 )28 520 o O I ) (R :
SEESEIINEIERD)EEEEsEETENasEsTn)seesnanana | [AYET 2 Weights
WEMMEN)(MEEE SN AN SRS R SNSRI nTeaeEesnren D)@ o0y 16 % 7 x 7
RN RN EN IR TSR R ) (SN

INEESEEN)

Weights:

(RN EASIEANS) (MM I RENENNGESNADANE

NCEETE T L ETFETEL DT 1 ENE LTS EE TS TR T R

) 0 N 0 ) 0 O T LR Y

) (PN ENSEA A EAREEN)(FEN YIS EAR A R :
N (FINETEAREEAARATRE AR )(CHanasnenanapEng [AYEr 3 weights
RLAL)(FRENETENEEHR AL ER SN (DA N R TR
FALAR)(ENRREIRELCENERENLRE)( ennoeaanenavam 20X 20X 7 x 7
CETE PENERTRFREL DTN T RN GE L EREE TRT T

AAFNTRN) (AN TR AN AR ) (SR R
CLLLELELNEETIN S ETS CLET T B TR E L BT L

EESDEEENE)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Last Layer

FC7 layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Last Layer: Nearest Neighbors

4096-dim vector

Recall: Nearest neighbors
in pixel space

ﬂ*lll

‘A : .

j»ldﬁﬂf
-0 E N

N\,
Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPSZ2012- e —
Figures reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1000

048

igel

——
Prirs: /W Hense
IR

eflsel

204

dense

128

13
13

128 Max

pooling

128
o -
g - 3
ax




Last Layer: Dimensionality Reduction

Hense
1000

|
IS | i
w sasa A
g l g
T ;ﬂ, s g | g
SR g" S =T
1. ; 7 B igre Bl o s £
aﬁ@ ?“,;1;3-%"@.!;' ,-t 7;7 ,}% fz% n’f;; s
*@wh *‘-‘«' ,»f’a,;..ﬁ v'Lj'Z et I8 5 g

Visualize the “space” of FC7 R qif, ) f;;:‘”*
'y XKL ,.' \,iv g

s'“‘;' RRLAA) AL ;;,,,, _ i
feature vectors by reducing e W = =

ors from y
(SN ,‘:‘ ","q,.ki’y

4096 to 2 dimensions

Simple algorithm: Principal
Component Analysis (PCA)
\

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Last Layer: Dimensionality Reduction

[

J2 | 3
T~
| 18

g S
3

§ £

= X%

=8

. £ ; l“-.— e, 8 A P
Van der Maaten and Hinton, “Visualizing Data using t-SNE’, JMLR 2008 See high-resolution versions at
E;;zul';:vrselglr:;ua(lzé(:ncvai\g]e‘r)\leer:n('i)iis::‘f'lcatlon with Deep Convolutional Neural Networks”, NIPS 2012. httD//CSStanford ed u/people/karpathv/cnnembed/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://cs.stanford.edu/people/karpathy/cnnembed/

L

fwd convb:26 | Back: deconv {from conv5_26, disp raw) | Boost: 0/1 | FPS: 0.8

gisfl, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
igure copyright Jason Yosinski, 2014. Reproduced with permission.




Maximally Activating Patche é)

\

__——

Pick a layer and a channel; e.g. conv5 is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations

P

(4N

| £ il
NG —~=p . ¥
Yur - e e {
e Se 1B 2 -

LN [ — b

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

R | (= 2 IS
o,V

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

» Visualizing CNNs_
~ Visualizing filters

— Last layer embeddings

— Visualizing activations
Maximally activating patches
(" — Occlusion maps B

— Salient or “important” pixels
» Gradient-based visualizations

__— How to evaluate visualizations?

— Creating “prototypical” images for a class
— Creating adversarial images

— Deep dream

— Feature inversion

(C) Dhruv Batra 27



Visual Explanations

Where does an intelligent system
“look” to make its predictions?

(C) Dhruv Batra 28



Which pixels matter: ‘CTCCIusionTAaps/]

0.4

Mask part of the image before feeding to CNN, /\
check how much predicted probabilities change

P(elephant) = 0.95
—

—

. . , :
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephantimage is CCO public domain
Networks’, ECCV 2014 Go-Karlsmage I+

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

R
Which pixels matter: Occlusion Maps

schooner

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

ax
pooling pooling

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

V@t if our model was linear?




What if our model was linear?

(C) Dhruv Batra 32



But it's not ®




-]
Can we make it linear?

S
|

@
7S

Deep neural network

hidden layer 1  hidden laver 2 hidden layer 3

input layer

(C) Dhruv Batra 34



Taylor Series

DS [7(@) ~ /() + 1 @)fe ~ x0)
OF
<)

LINEARIZING iﬁtﬁ

(C) Dhruv Batra 35




Feature Importance in Deep Models

. ]S
|| 9%

X0

We|, X) + b S.(x

—_—

Backprop!

-

input layer

hidden layer 1 hidden layer 2 hidden layer 3

(C) Dhruv Batra 36



Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

2008 2048

Max 128 Max pooling
pooling pooling

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

A 4

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification

Models ang Saliency Maps”, ICLR Workshop 2014.
Figures copyrig Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Saliency Maps: Segmentation without supervision

Use GrabCut on
saliency map

T 4
Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient-based Visualizations

G ) oo

|dentical for all Ie;e}s except RelLU

\"'\

A

(C) Dhruv Batra 41



Remember ReLUs?
h'*' = ReLU(h') = max{0, h'}

| api+ Cifpt<0 A
5-hl — . [ =] [[h > O]]
{ < ]‘ | lfé— >Q_ —— SN

(C) Dhruv Batra 92 15 -1 -0.5 0 0.5 1 15 2 42



Forward pass
ATl = max{0, A}

(——N) ~

-

91, l OL  Backward pass:
ont ~ e = Y557 backpropagation, |

T >0 B
S
0L oL

o Rackward pass:

ot~ el > g '
P —

Dhe>©

o
oL ! :
o7 =[(h' > 0@@)]] ackward pass:
~——)1 puided
oh'tl backpropagation

(C) Dhruv Batra




Backprop vs Deconv vs Guided BP

« Guided Backprop tends to be “cleanest”

Backpro




In&rmediate features via (guided) backprop

AR SO0
{(" | JANE N )

11 'Anv'

N "1
SSE|

Maximally activating patches Guided Backprop
(Each row is a different neuron) — —

VK 55 Y

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Intermediate features via (guided) backprop

Ul 18

M"

-y

Maximally activating patches Guided Backprop -J
(Each row is a different neuron)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing Activations

convl pl nl1 conv2 p2 n2 conv3 conv4 eomvd p5 fc6 fc7 fe8 prot

convS feature map
is 128x13x13;
visualize as 128
13x13 grayscale
images

https://youtu.be/Agkf
|Q41GaM?t=92

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://youtu.be/AgkfIQ4IGaM?t=92

Problem with Guided Backup

* Not very “class-discriminative’ﬂ
e —

GB for “airliner” GB for “bus”

48



|Grad-CAM|

Visual Explanations from Deep Networks

via Gradient-based Localization
[ICCV “17]

Ramprasaath Selvaraju Michg_el Cogswell Abhishek Das Ramakrishna Vedantam

Devi Parikh Dhruv Batra

Georgial s
of Technology

% VirginiaTech

facebook research




Grad-CAM

L
]
1
]
]
]
|

________

<«—— Gradients
——> Activations

________

RelLU

Grad-CAM

____________

——m—-——

Rectified Conv

AN An&

N/ .
Tagk:specific
,2 Network

==

Backprop till
conv

Is there a cat?

/’_—\

Question

RNN/ALSTM

FC Layer

(or)

Visual
Question Answering

(or)

50



Guided Grad-CAM

__________

<«—— Gradients
——> Activations

__________

Al
Ll
1
1
1
1
!

Guided Backpropagation

—J

Rectified Conv

Feature Maps

4
/ 7
4
I Y et

/
AN Angr

N/ .
Tagk:specific
,* Network

AY
T ==

Backprop till
conv

/A

Is there a cat?

. RNN/LSTM
Question

FC Layer

(or)

Visual
Question Answering

(or)

51



e
Analyzing Failure Modes with Grad-CAM

| Reasonable predictions are |

| _made in many failure cases. !

Predicted: Car mirro
A

Ground-truth: VVolano Ground-trut Wm
y

Slide Credit: Ram Selvaraju 952



Ground truth: volcano  Ground truth: pineapple iround truth: polaroid came  Ground truth: beaker Ground truth: coil

—_——

Predicted: sandbar i ! pati Predicted: pencil sharpene Predicted: syringe Predicted: vine snake




Grad-CAM Visual Explanations for Captioning

Guided Backprop Grad-CAM Guided Grad-CAM

A horse is standing in a field with a fence in the background

Slide Credit: Ram Selvaraju o4



[ 1 CloudCV: Large Scale Distrii x

< C  (® 128.173.88.229:8000/vqa Tie
::" Apps YW Bookmarks 5] VT wiki £ hackathon E5J TTIC £S5 sortStory ES minds and machines £ Machine Learning £ Coding 5 attention 53 GT [ atlanta housing £ humor  » 5] Other Bookmarks

Result of Grad-CAM for Visual Question Answering
SN——

Enter the qIJestion

Answer(Optional)

Credits

Code for VQA Model
Built by @deshraj

(C) Dhruv Batra 60



Plan for Today

* Visualizing CNNs

— Visualizing filters

— Last layer embeddings

— Visualizing activations

— Maximally activating patches
— Occlusion maps

— Salient or “important” pixels

i — How to evaluate visualization?‘-)

— Creating “prototypical” images for a class
— Creating adversarial images

— Deep dream

— Feature inversion

(C) Dhruv Batra 61



How we evaluate explanations?

—_—~——— L ——
» Class-discriminative?
— Show what they say they found?

* Building Trust with a User?
— Help users?

* Human-like?
— Do machines look where humans look?

(C) Dhruv Batra 62



N
|Is Grad-CAM more class discriminative?

. Can people tell which class is being visualized?

*— Images es from Pascal VOC' Om&:gunub

What do you see?
)

Your options:

V horse

person

_J

 Intuition: A good explanation produces discriminative

visualizations for the class of interest.
Slide Credit: Ram Selvaraju 63




-
Is Grad-CAM more class discriminative?

« Human accuracy for 2-class classification

Method Human Classification Accuracy

Guided Backpropagation 44.44 +17%
Guided Grad-CAM 61.23 °

. Grad-CAM makes
. existing visualizations
. class discriminative.

64



Help establish trust with a user?

* <Given explanations from 2 models,
— VGG16 and AlexNet

which one is more trustworthy?

* Pick images whﬁre both models = correct prediction
 Show these to AMT workers and evaluate

65



- ]
Help establish trust in a user?

Both robots predicted_:l__m:sa

Robot Abased it's decision on Robot B based it's decision on

w more ream

— 1. Robot A seems clearly more reasonable than robot B
2. Robot A seems slightly more reasonable than robot B
_——3- Both robots seem equally reasonable
4. Robot B seems slightly more reasonable than robot A
5. Robot B seems clearly more reasonable than robot A

Method Relative Reliability

Guided Backpropagation +1.00
Guided Grad-CAM +1.27

Users place higher trustin a

model that generalizes better.
—————————————————————————————— 66




Where do humans choose to
look to answer visual questions?

67



VQA-HAT (Human ATtention)

Question: HOW

68



VQA-HAT (Human ATtention)

What food is on the table? Cake

69



VQA-HAT (Human ATtention)

What animal is she riding? Horse

/ o

70



VQA-HAT (Human ATtention)

What number of cats are laying on the bed? 2

71



Are Grad-CAM explanat

ions human-like?

e Correlation with human attention maps

[Das & Agarwal et al. EMNLP’1

What are they doing?

S~S~——

Human ATtention map (HAT) for ‘ealing’

_—_—

l Grad-CAM for ‘31—/
—

Method Rank Correlation

1 .
i Current models look at regions more
similar to humans than baselines

W/ HAT
Guided Backpropagation O 1 22
Guided Grad-CAM 0.136

72




Plan for Today

* Visualizing CNNs

— Visualizing filters

— Last layer embeddings

— Visualizing activations
— Maximally activating patches
— Occlusion maps

— Salient or “important” pixels
» Gradient-based visualizations

_———_How to evaluate visualizations?
——=Greating “prototypical” images for a class
— Creating adversarial images
— Deep dream
— Feature inversion

(C) Dhruv Batra 73



Visualizing CNN features: Gradient Ascent on Pixels

(Guided) backprop:
Find 0

image that a neuron
responds to J

=
I*=@+RI i
'/(—’ \\

Neuron value \Natural image regularizA
T —

ient ascent on pixels:
Generate a synthetic image
that maximally activates a
neuron

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Visualizing CNN features: Gradient Ascent on Pixels

arngaX l A |2\

score for class ¢ (before Softmax)
Repeat:

2. Forward image to compute current scores

3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image

1. Initialize image to zeros

/

zero image

v ——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- 00000000000
Visualizing CNN features: Gradient Ascent on Pixels

arg max S (1) — A3

Simple regularizer: Penalize L2
norm of generated image

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Visualizing CNN features: Gradient Ascent on Pixels

arg max S, (I) A7

Simple regularizer: Penalize L2
norm of generated image

bell pepper lemon husky

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Visualizing CNN features: Gradient Ascent on Pixels

arg max S, (I) A7

Simple regularizer: Penalize L2
norm of generated image

washing machine computer keyboard kit fox

limousine

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. goose ostrich

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014.
Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A

;Foollng Images / Adversarial Examples)l \‘/l‘l&

(PStart from an arbi image

)Pick an arbitrary class
odify the image to maximize the class

(4)Repeat until network is fooled

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fooling Images / Adversarial ples
T = Wx+b =

African elephant koala Difference 10x Difference

iPod Difference 10x Difference

) e . .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Plan for Today

* Visualizing CNNs
— Visualizing filters
— Last layer embeddings
— Visualizing activations
— Maximally activating patches
— Occlusion maps

— Salient or “important” pixels
» Gradient-based visualizations

— How to evaluate visualizations?

— Creating “prototypical” images for a class
— Creating adversarial images

— Deep dream

— Feature inversion

(C) Dhruv Batra 81



DeepDream: Amplify existing features

Rather than syntheS|Z|ng an |mage to maximize a specific neuron, instead
try to ampli ivations at some layer in the network |

Choose an image and a layer in a CNN; repeat:
Forward: compute activations at chosen layer

Set gradient of chosen layer equal to its activation
Backward: Compute gradient on image

Update image

hwnN -~

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural
Networks”, Google Research Blog. Images are licensed under CC-BY
4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead
try to amplify the neuron activations at some layer in the network

D

Choose an image and a layer in a CNN; repeat: _
1. Forward: compute activations at chosen layer Equivalent to:
2. Set gradient er equal to its activation _ I* = arg max, ki f.0)?
e ey e

3. Backward: Compute gradient on image
4. Update image
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

—
Networks”, Google Research Blog. Images are licensed under CC-BY
4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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https://commons.wikimedia.org/wiki/File:Appearance_of_sky_for_weather_forecast,_Dhaka,_Bangladesh.JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

"The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

Feature Inversion
_Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization)

» Given feature vector

x* = argmin [£(R(X),|Po) + WR(x)

xeRHXWXC’

(®(x), o) = | BL5) — Do

Rys(x) =) ((wz‘,jﬂ — 2i5)° + (Ti1,5 — 33:'3')2)

i \ Total Variation regularizer

(encourages spatial smoothness)
Mahendran and Vedaldi, fUnderstanding Deep Image Representations by Inverting Them”, CVPR 2015

» Features of new image

B
2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Feature Inversion

Reconstructing from different layers of VGG-16

relud_3 rely re1u5

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.
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