
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Visualizing CNNs



Recap from last time
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Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transpose Convolution: 1D Example

a

b

x

y

z

ax

ay

az + bx

by 

bz

Input Filter
Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor
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3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
Unpooling or strided 
transpose convolution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why this operation?
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What is deconvolution?
• (Non-blind) Deconvolution
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What is deconvolution?
• (Non-blind) Deconvolution
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What does “deconvolution” have to do with “transposed convolution”?
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We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

When stride=1, convolution transpose is 
just a regular convolution (with different 
padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Visualizing CNNs

– Visualizing filters
– Last layer embeddings
– Visualizing activations
– Maximally activating patches
– Occlusion maps
– Salient or “important” pixels

• Gradient-based visualizations

– How to evaluate visualizations?
– Creating “prototypical” images for a class
– Creating adversarial images
– Deep dream
– Feature inversion
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What’s going on inside ConvNets?

This image is CC0 public domain

Class Scores: 

1000 numbers

Input Image:

3 x 224 x 224

What are the intermediate features looking for?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Figure reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en


First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualize the 
filters/kernels 
(raw weights)

We can visualize 
filters at higher 
layers, but not 
that interesting

(these are taken 
from ConvNetJS 
CIFAR-10 
demo)

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x 7

20 x 20 x 7 x 7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



FC7 layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the 
feature vectors

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Last Layer



Last Layer: Nearest Neighbors

Test image L2 Nearest neighbors in feature space

4096-dim vector

Recall: Nearest neighbors 
in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principal 
Component Analysis (PCA)

More complex: t-SNE

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Figure reproduced with permission.

See high-resolution versions at  

http://cs.stanford.edu/people/karpathy/cnnembed/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://cs.stanford.edu/people/karpathy/cnnembed/


Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Figure copyright Jason Yosinski, 2014. Reproduced with permission.



Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Visualizing CNNs

– Visualizing filters
– Last layer embeddings
– Visualizing activations
– Maximally activating patches
– Occlusion maps
– Salient or “important” pixels

• Gradient-based visualizations

– How to evaluate visualizations?
– Creating “prototypical” images for a class
– Creating adversarial images
– Deep dream
– Feature inversion
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Visual Explanations

Where does an intelligent system 
“look” to make its predictions?

(C) Dhruv Batra 28



Which pixels matter: Occlusion Maps

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

P(elephant) = 0.95

P(elephant) = 0.75

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Which pixels matter: Occlusion Maps

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


What if our model was linear?
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hwc , xi+ b = Sc(x)



What if our model was linear?
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hwc , xi+ b = Sc(x)
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But it’s not L
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hwc , xi+ b = Sc(x)



Can we make it linear?

(C) Dhruv Batra 34

f(x) = Sc(x)



Taylor Series
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f(x) ⇡ f(x0) + f 0(x0)(x� x0)



Feature Importance in Deep Models
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hwc , xi+ b ⇡ Sc(x)

wc =
@Sc

@x

����
x0

Backprop!



Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Saliency Maps: Segmentation without supervision

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on 
saliency map

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient-based Visualizations
• Raw Gradients

– [Simoyan et al. ICLRw ‘14]

• ‘Deconvolution’
– [Zeiler & Fergus, ECCV ‘14]

• Guided Backprop
– [Springenber et al. ICLR ‘15]
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Identical for all layers except ReLU



Remember ReLUs?
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hl+1 = ReLU(hl) = max{0, hl}

@hl+1

@hl
=

(
0 if hl < 0

1 if hl > 0
= [[hl > 0]]
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hl+1 = max{0, hl} hl hl+1

@L

@hl+1

@L

@hl+1

@L

@hl+1

@L

@hl
= [[hl > 0]]

@L

@hl+1

@L

@hl
= [[hl+1 > 0]]

@L

@hl+1

@L

@hl
= [[(hl > 0)&&(hl+1 > 0)]]

@L

@hl+1



Backprop vs Deconv vs Guided BP
• Guided Backprop tends to be “cleanest”

44

Backprop Deconv Guided Backprop



Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map 

is 128x13x13; 

visualize as 128 

13x13 grayscale 

images

https://youtu.be/Agkf

IQ4IGaM?t=92

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://youtu.be/AgkfIQ4IGaM?t=92


Problem with Guided Backup
• Not very “class-discriminative”

48

GB for “bus”GB for “airliner”

Slide Credit: Ram Selvaraju



Grad-CAM
Visual Explanations from Deep Networks 

via Gradient-based Localization 
[ICCV ‘17] 

Ramprasaath Selvaraju   Michael Cogswell        Abhishek Das    Ramakrishna Vedantam

Devi Parikh                 Dhruv Batra



Grad-CAM

50

Backprop till 
conv

Rectified Conv
Feature Maps

+

Grad-CAM

Slide Credit: Ram Selvaraju



Grad-CAM

51

Guided Grad-CAM

Backprop till 
conv

Guided Backpropagation

Rectified Conv
Feature Maps

+

Guided Grad-CAM

Slide Credit: Ram Selvaraju



Ground-truth: Volcano

Predicted: Vine snake

Ground-truth: coil

Predicted: Car mirror

Reasonable predictions are 
made in many failure cases.

52

Analyzing Failure Modes with Grad-CAM

Slide Credit: Ram Selvaraju
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Grad-CAM Visual Explanations for Captioning

54Slide Credit: Ram Selvaraju
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Plan for Today
• Visualizing CNNs

– Visualizing filters
– Last layer embeddings
– Visualizing activations
– Maximally activating patches
– Occlusion maps
– Salient or “important” pixels

• Gradient-based visualizations

– How to evaluate visualization?
– Creating “prototypical” images for a class
– Creating adversarial images
– Deep dream
– Feature inversion
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How we evaluate explanations?
• Class-discriminative?

– Show what they say they found?

• Building Trust with a User?
– Help users?

• Human-like?
– Do machines look where humans look?
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Is Grad-CAM more class discriminative?

• Can people tell which class is being visualized?

• Images from Pascal VOC’07 with exactly 2 categories.

• Intuition: A good explanation produces discriminative 

visualizations for the class of interest.
63Slide Credit: Ram Selvaraju



Is Grad-CAM more class discriminative?
• Human accuracy for 2-class classification

64Slide Credit: Ram Selvaraju

+17%

Grad-CAM makes 
existing visualizations 
class discriminative.



Help establish trust with a user?
• Given explanations from 2 models, 

– VGG16 and AlexNet

which one is more trustworthy?

• Pick images where both models = correct prediction
• Show these to AMT workers and evaluate

65Slide Credit: Ram Selvaraju



Help establish trust in a user?

66Slide Credit: Ram Selvaraju

Users place higher trust in a 
model that generalizes better.



Where do humans choose to 
look to answer visual questions?

67



68

VQA-HAT (Human ATtention)
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What food is on the table? Cake

VQA-HAT (Human ATtention)

Slide Credit: Abhishek Das
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What animal is she riding? Horse

VQA-HAT (Human ATtention)

Slide Credit: Abhishek Das
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What number of cats are laying on the bed? 2

VQA-HAT (Human ATtention)

Slide Credit: Abhishek Das



• Correlation with human attention maps 
[Das & Agarwal et al. EMNLP’16]

Grad-CAM for ‘eating’What are they doing? Human ATtention map (HAT) for ‘eating’

HAT

0.122Guided Backpropagation

Current models look at regions more 
similar to humans than baselines

72

0.136Guided Grad-CAM

Are Grad-CAM explanations human-like?

Slide Credit: Ram Selvaraju



Plan for Today
• Visualizing CNNs

– Visualizing filters
– Last layer embeddings
– Visualizing activations
– Maximally activating patches
– Occlusion maps
– Salient or “important” pixels

• Gradient-based visualizations

– How to evaluate visualizations?
– Creating “prototypical” images for a class
– Creating adversarial images
– Deep dream
– Feature inversion
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Visualizing CNN features: Gradient Ascent on Pixels

(Guided) backprop:
Find the part of an 
image that a neuron 
responds to

Gradient ascent on pixels:
Generate a synthetic image 
that maximally activates a 
neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing CNN features: Gradient Ascent on Pixels

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:

2. Forward image to compute current scores

3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing CNN features: Gradient Ascent on Pixels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize L2 

norm of generated image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing CNN features: Gradient Ascent on Pixels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize L2 

norm of generated image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing CNN features: Gradient Ascent on Pixels

Simple regularizer: Penalize L2 
norm of generated image

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. 
Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fooling Images / Adversarial Examples

(1)Start from an arbitrary image
(2)Pick an arbitrary class
(3)Modify the image to maximize the class
(4)Repeat until network is fooled

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Plan for Today
• Visualizing CNNs

– Visualizing filters
– Last layer embeddings
– Visualizing activations
– Maximally activating patches
– Occlusion maps
– Salient or “important” pixels

• Gradient-based visualizations

– How to evaluate visualizations?
– Creating “prototypical” images for a class
– Creating adversarial images
– Deep dream
– Feature inversion
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DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 
4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/


DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Equivalent to:
I* = arg maxI ∑i fi(I)2

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 
4.0

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/


Sky image is licensed under CC-BY SA 3.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:Appearance_of_sky_for_weather_forecast,_Dhaka,_Bangladesh.JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.en


Image is licensed under CC-BY 4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/


Image is licensed under CC-BY 4.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/


Feature Inversion
Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector
- “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature vector

Features of new image

Total Variation regularizer 
(encourages spatial smoothness)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. 

Reproduced for educational purposes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


