Counting the number of distinct elements

Question 1 This is a network data streaming question, but it is designed in such a way that there
is really no need (and of little extra help) to be familiar with the literature.

e (a) Elaborate on one example network application (preferably from your own research area)
in which we need to know the total number of active TCP or UDP flows during a certain time
window. The following paper provides some background information concerning the problem
of estimating this quantity approximately:

Cristian Estan, George Varghese, Mike Fisk: Bitmap algorithms for counting active flows on
high speed links. Internet Measurement Conference 2003: 153-166

Since counting it exactly using a hash table can be very expensive (in terms of space require-
ment) when the number of flows is large, we often have to settle with approximate counting
using a network data streaming algorithm. In such an algorithm, each incoming packet will be
looked at upon its arrival, and its “contribution” to the statistics we would like to estimate is
credited to a synopsis data structure. Then we will never be able to see this packet again later
on . In other words, such an algorithm typically takes only “one pass” on the data stream.

Subproblems (b) and (c) will guide you through designing a network data streaming algorithm
for estimating the number of active flows during a time window.

e (b) Let X3, Xs, ..., X,, be iid random variables uniformly distributed in [0, 1]. Let Y be defined
as min{ X1, Xa, ..., X, }. Prove that its probability density function is fy (y) = n(1—y)"~* for
y € [0, 1]. Please also derive the expectation and variance of Y.

e (c) Based on the result of (b), design a data streaming algorithm that approximately estimates
the number of active flows using only o(N) space, where N is the number of active flows during
a certain time window. Note also that the aforementioned naive hash table approach would
require 2(N) space. Your algorithm should produce reasonably accurate estimations, but
you are NOT required to prove any performance guarantees. (Hint: think about "method of
moments” in the statistical estimation theory and you may assume that multiple statistically
independent hash functions exist, each of which hashes distinct flow labels into IID random
values uniformly distributed in [0, 1]).

e (d) Association rule mining is the most fundamental problem in data mining. It can be
described in the context of the following network application. Let us organize a set of web
documents across the Internet as a 2D table. Each column corresponds to an English word
(say “evil”) and each row corresponds to a web document. The cell at the intersection of the
i¢p, Tow and jy, column takes value 1 if the i, document has the j;;, word in it and takes
value 0 otherwise. We would like to find a pair of words (for example “evil” and “sun”) that
occur frequently together in these documents, which is referred to as an association in the data
mining literature. More precisely, if we view each column as a bit vector, we would like to find
a pair of column vectors that if bitwise-ANDed together, will have significantly larger number
of 1’s than their bitwise-AND result should statistically have. For example, if the word “sun”
is included in 1/2 of the documents and the word “evil” is included in 1/3 of the documents,
then only approximately 1/6 of the documents should have both “sun” and “evil”, if there is
indeed no association between them. You will be asked to design an algorithm that will be
used as a subroutine for finding all such associations in the 2D table T'.

Now building on your algorithm developed for (c), design an algorithm for (approximately)
estimating the number of 1’s in the bitwise-AND of any two column vectors. Your estimation
algorithm should be much more efficient (in terms of execution time) than the naive algorithm
(bitwise-AND two bit vectors together and count the number of 1’s in it). Let us assume T



has m = 5,000 columns (i.e., 5000 different English words) and n = 10 billion rows (i.e., 10
billion different documents) when you are comparing the efficiency of two algorithms. Your
algorithm should produce reasonably accurate estimations, but you are NOT required to prove
any performance guarantees.



