CS 1301 HOMEWORK 8: OBJECT ORIENTED 1
PROGRAMMING

Important

Due Date: Before 11:55pm on Monday April 18" 2016.

2. This homework is graded out of 100 points.

3. This is an Individual Assignment. You may collaborate with other students in this
class. Collaboration means talking through problems, assisting with debugging,
explaining a concept, etc. Students may only collaborate with fellow students
currently taking CS 1301, the TA's and the lecturer. You should not exchange
code or write code for others. For individual assignments, each student must turn
in @ unique program. Your submission must not be substantially similar to
another student's submission. Collaboration at a reasonable level will not result
in substantially similar code.

4. For Help:

o TA Helpdesk (Schedule posted on class website.)

o Email TA's or use Piazza Forums Notes:

o How to Think Like a Computer Scientists
[http://openbookproject.net/thinkcs/python/english3e/]

o CS 1301 Python Debugging Guide
[http://www.cc.gatech.edu/classes/AY2016/cs1301 spring/CS-1301-
Debugging-Guide/index.html]

5. Don't forget to include the required collaboration statement (outlined on the
syllabus).

6. Do not wait until the last minute to do this assignment in case you run into
problems.

7. Read the entire specifications document before starting this
assignment.

Object-oriented programming

Python is an object-oriented programming language. That means it provides
features that support object-oriented programming (OOP).

Object-oriented programming has its roots in the 1960s, but it wasn’t until the mid
1980s that it became the main programming paradigm used in the creation of new
software.

In object-oriented programming the focus is on the creation of objects, which contain
both data and functionality together. Usually, each object definition corresponds to
some object or concept in the real world and the functions that operate on that object
correspond to the ways real-world objects interact. We've already seen classes
like window, Picture, Myro, and many others. We are now ready to create our own user-
defined class.

[http://openbookproject.net/thinkes/python/english3e/classes and objects I.html]

Introduction

The goal of this homework is for you to get practice and understand the basics of Object
Oriented Programming. Your mission, should you choose to accept it, involves the creation of

Author: Daniel Barrundia | Report Issues: [dbarrundia3@gatech.edu]


mailto:dbarrundia3@gatech.edu?subject=%5BCS1301%5D%20HW09%20-%20Issue
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/

2 HOMEWORK 8: OBJECT ORIENTED PROGRAMMING

three classes: Student, Course, and Instructor. Each class will contain several methods for
you to implement. What you should do for each method is described below and in the
docstrings of the file. Below you will find more information to complete your assignment.
Read it thoroughly before you begin. The key to this homework is to see the bigger picture of
how the 3 classes are interconnected i.e., a Course contains an Instructor, a Student can
have many Courses, and an Instructor can change a Student’s course grade. You have until -
to complete this mission. This message will self-destruct in five seconds.

Student

You are to code a student object. Your student should have the following properties:
Attributes:
name: A string representing the student's name.
gtid: A string representing the student's GT id.
year: An integer representing the student's class (default: 1)
1 -> Freshman
2 -> Sophomore
3 -> Junior
4 -> Senior
courses: A dictionary representing the courses a student is enrolled.
Key -> A string representing a Course code
Value -> [A Course object, grade] (a list 0™ index a Course
Object, 1°" index an int representing the grade of the course (0-4) )

|
|
|
|
|
|
|
|
|
|
|
b
|

| Methods defined here:

| __init_ (self, name, gtid, year=1l)

| Initialize a Student object whose name is *name*, gtid is *gtid*, gpa
is *gpa*, class standing is *year* (default: 1); courses start empty
|
| calculate_gpa (self)
| Returns a float of the student's gpa. To calculate GPA:
| 1. If student has no courses his gpa must be 0.0
| 2. Multiply the grade (0-4) by the number of credit to get quality
o
|
|
|
|
|
u
|
|
|
|
|
|
|
|
|
|
|
|
|

poins.

w

Total the credit hours. Total the total quality points.
Divide the total quality points by the total credit hours

>

drop (self, course)
Drop a course if student is registered to it. Return True if
successfully dropped and False if student is not registered for that course.

get_real_vyear (self)
return a string representation of the student's class standing

1 -> Freshman, 2 -> Sophomore, 3 -> Junior, 4 -> Senior

get_total_credits(self)
return the amount of credits a student is taking as an int

in_dean_list(self)
return true if gpa greater than or equal 3, false otherwise

is_taking(self, course)
Returns true if student is registered for a course

Author: Daniel Barrundia | Report Issues: [dbarrundia3@gatech.edu]


mailto:dbarrundia3@gatech.edu?subject=%5BCS1301%5D%20HW09%20-%20Issue

CS 1301 HOMEWORK 8: OBJECT ORIENTED 3
PROGRAMMING

|

| register(self, course)

| Add a course to the student's courses. No duplicate courses are
allowed. If student is registered for X course with X professor, it should not
be allowed to registered for X course with Y professor. The initial grade for
the course should be 0.

|
register_many (self, courses)

register courses from a list of Course objects

set_vear (self, year)
change student's year. year is now *year*

Course

You are to code a Course object. Your course should have the following properties:

| Course have the following properties:

| Attributes:

| code: A string representing the course code (i.e CS1301)

| credits: An integer representing the course's amount of credits (i.e 3)

| instructor: An Instructor object representing the instructor of the
course

|

| Methods defined here:

|

| __init_ (self, code, credits, instructor)

| Initialize a Course object whose code is *code*, credits is *cresits*,
and instructor is *instructor*.

| get_code(self)
returns string representing the course code

get_credits (self)
returns int representing the course credits

Instructor

You are to code an Instructor object. Your Instructor should have the following
properties:
| Instructor have the following properties:
Attributes:
name: A string representing the instructor name (i.e CS1301)

Methods defined here:

__init__ (self, name)
Initialize an Instructor object whose name is *name*.
assign_grade(self, student, course, grade)
| If student is taking a course, change the student's grade in a course
by *grade*. grade is a number between 0 and 4 inclusively. The max a student
can get in a course is 4.

college test.py

Author: Daniel Barrundia | Report Issues: [dbarrundia3@gatech.edu]


mailto:dbarrundia3@gatech.edu?subject=%5BCS1301%5D%20HW09%20-%20Issue

4 HOMEWORK 8: OBJECT ORIENTED PROGRAMMING

We have provided you with a python file called college_test.py. In this file we have
created a series of tests for your usage. We understand you probably have never been
exposed to testing code so you are not expected to do anything to this file or even use
this file if you don’t want to. However, we encourage you to use it as it will be highly
beneficial in testing our your code. Feel free to add your own tests to the file to cover
any additional cases you would like to test.

If you do desire to test your code, all you have to do is have the college.py and the
college_test.py files in the same directory. Open and run college_test.py. After
running the tests you should see their results. Check the results and start debugging if
needed. If you pass all the tests you should see something like this in your output
window:

test_add_a _course (__main__.CollegeTest) ... ok
test_add_a_duplicate_course (__main__.CollegeTest) ... ok
test_add_many courses (__main__.CollegeTest) ... ok
test_add_many courses_with_duplicates (__main__.CollegeTest) ... ok
test_calculate_gpa_l1 (_ main__.CollegeTest) ... ok
test_calculate_gpa_2 (__main__.CollegeTest) ... ok
test_calculate_gpa_3 (__main_.CollegeTest) ... ok
test_default_year (__main__.CollegeTest) ... ok
test_drop_course (__main__.CollegeTest) ... ok
test_drop_course_2 (__main__.CollegeTest) ... ok
test_empty courses (__main__.CollegeTest) ... ok
test_get_course_code (__main__.CollegeTest) ... ok
test_get_course_credits (__main__.CollegeTest) ... ok
test_get_real_ year (_ main_.CollegeTest) ... ok
test_get_total_credits (__main__.CollegeTest) ... ok
test_get_total credits_2 (__main__.CollegeTest) ... ok
test_get_total credits_3 (__main__.CollegeTest) ... ok
test_in_dean_list (__main_.CollegeTest) ... ok
test_in_dean_list_2 (__main__.CollegeTest) ... ok
test_init_course_code (_ main__.CollegeTest) ... ok
test_init_course credits (__main__.CollegeTest) ... ok
test_init_course_instructor |(_ main__ .CollegeTest) ... ok

test_init_instructor (__main__ .CollegeTest) ... ok
test_init_name (__main_.CollegeTest) ... ok

test_init_id (_ main_ .CollegeTest) ... ok
test_set_year (__main__.CollegeTest) ... ok

Ran 26 tests in 0.363s

OK
Tips & Hints

1. Get familiar with OOP before you start coding. Revise your class notes and
read section 15 of the book again.

2. Even if you do not want to use the test file, open it and read it, as this might
help you understand what we are looking for and it might give you great hints
on how to implement your classes and methods. Huge spoilers in this file.

3. Use the methods you are writing inside other methods. Hints:

a. InInstructor’'s assign_grade () you have a student object that has an
is_taking () method. So an instructor can check that the student is
taking the course using this method and then change the grade.

b. In student’'s calculate_gpa () you have access to the
get_total_credits () method, use it.

4. In college_test.py the module setUp()is always called before any test.
Each test is supposed to be independent to all others. Read more about
unittest here: [https://docs.python.org/3/library/unittest.html]

Provided

The following file(s) have been provided to you. There are several, but you will only edit
one of them:
1. college.py

This is the file you will edit and implement. All instructions for what the
methods should do are in the docstrings.

Author: Daniel Barrundia | Report Issues: [dbarrundia3@gatech.edu]


mailto:dbarrundia3@gatech.edu?subject=%5BCS1301%5D%20HW09%20-%20Issue

CS 1301 HOMEWORK 8: OBJECT ORIENTED 5
PROGRAMMING

2. college test.py
This is a test file that contains a set of tests if you wish to test your code. This
part is completely optional and it's provided just for your benefit. It is not
intended to be exhaustive and does not guarantee any type of grade.
It is specifically missing some test cases that may be important! Write your
own tests if you wish to ensure you cover all edge cases.

Deliverables

You must submit all of the following file(s). Please make sure the filename matches the
filename(s) below. Be sure you receive the confirmation email from T-Square, and then
download your uploaded files to a new folder and run them.

1. college.py
Grading Rubric
Student

__init 5pts
calculate_gpa 10pts
set_vear S5pts
in dean_list 5pts
get_real_vyear S5pts
get_total_credits 5pts
register 10pts
register_many 5pts
drop 10pts
is_taking 5pts
TOTAL 65pts
Course
__init 5pts
get_code 5pts
get_credits 5pts
TOTAL 15pts

Author: Daniel Barrundia | Report Issues: [dbarrundia3@gatech.edu]


mailto:dbarrundia3@gatech.edu?subject=%5BCS1301%5D%20HW09%20-%20Issue

6 HOMEWORK 8: OBJECT ORIENTED PROGRAMMING

Instructor
__init 15pts
assign_grade 5pts
TOTAL 20pts

TOTAL

100pts

Author: Daniel Barrundia | Report Issues: [dbarrundia3@gatech.edu]


mailto:dbarrundia3@gatech.edu?subject=%5BCS1301%5D%20HW09%20-%20Issue

