Parametric Design with OpenSCAD

= Jay Summet

= jay @summet.com

Copyright Jay Summet — All Rights Reserved

OpenSCAD

Open Source parametric design tool
Executables for Windows, Mac, Linux

Free to distribute, free to use, cross-platform
Converts textual instructions into 3D shapes

Supports Constructive Solid Geometry (CSG)
modeling

Resource Links

= Downloads:

= User Manual:

http://www.openscad.org/
http://en.wikibooks.org/wiki/OpenSCAD_User_Manual

OpenSCAD - New Document*

File Edit Design View Help

// Named values
w= 5;

h= 20;

d=15;

/] Vector
dims = [w,d,h];

// call to built-in module
cube(dims);

=

-,

Parsing design (AST generation)...

Compiling design (CSG Tree generation)...
Compilation finished.

Compiling design (CSG Products generation)...
PolySets in cache: 3

Polygons in cache: 18

CGAL Polyhedrons in cache: 0

Wertices in cache: 0

Compiling design (CSG Products normalization)...
Normalized CSG tree has 1 elements

CSG generation finished.

Total rendering time: 0 hours, 0 minutes, 0 seconds

|Viewport: translate = [0.00 0.00 0.00], rotate = [73.20 0.00 27.10], distance = 500.00

Comments

= C/Java/C++ commenting conventions

= Any text after a double forward-slash (//) on a line
1s 1ignored by the parser.

= Multi-line comments are started with a slash-star
(/*) and ended with a star-slash (*/)

Named Values

= a.k.a. Variables

= A name 1s assigned a value with the assignment
operator (=). Can use expressions on the right
hand side of the assignment operator to calculate
values.

= CAUTION! : Named Values are set at compile
time, NOT RUN TIME! Last assignment takes
precidence! (But see the “assign” statement...)

Example:

q = 0 . Parsing design (AST generation)...
r Compiling design (CSG Tree generation)...
1 P T . ECHO: "Ais:", 5
echo("A is:", a); ECHO: “A is:". 5
ECHO: "B is:", 15
Compilation finished.
Compiling design (CSG Products generation)...
b a -|- 1 0 " ERROR: CSG generation failed! (no top level object found)
! PolySets in cache: 3
a 5 . Polygons in cache: 18
! CGAL Polyhedrons in cache: 0
Vertices in cache: 0

echo("A is:", a);
echo("B is:", b);

Variable Advice

= To keep yourselt sane:

= Always make new variables, never re-assign new
values to old variables.

= Think of variables as ’constants’™ or descriptive
names”’ instead of “variables™.

Vectors

« Example: dims = [w,d,h];

= Using square brackets, declare a vector of values,
either from constants, expressions, or named
values/variables.

= Example: dims = [w*2, d+3, 17];

Statements

= REQUIRE semicolons to end!

= If you forget the semicolon the parser will typically
display the error as occuring at the beginning of
the next line.

= So check the line before the error!

Sphere

File Edit Design View Help

sphere(r=10);

Transformations

Objects and entire sub-trees can have
transformations applied to them that affect their
size, placement, color and shape.

Most commonly used: rotate, translate
Also usetful: mirror, scale, color, hull

Advanced: multmatrix, minkowski

Sphere - Translated

File Edit Design View Help

translate([0,15,0])
sphere(r=10);

sub-tree

= The translate command works on a sub-tree that
contains child nodes. By default, the sub-tree
includes the immediately following object, ended
by a semicolon.

= If you use {curly brackets} to deliniate sub-trees,
you can include more than one module or child
node.

Sphere & Cube Translated

File Edit Design View Help

translate([0,15,0]) {
sphere(r=10);
cube([1,5,25]);

}

Sphere - Not Translated

File Edit Design View Help

translate([0,15,0]);
sphere(r=10);]

Note the extra semicolon!

Centering on Origin

= By default, when a sphere 1s created it 1s centered
on the origin.

= However, a cube 1s created with its corner at the
origin by default.

= This 1s why the cube in the previous slide 1s not
“centered” within the sphere after they are both
translated the same amount.

Sphere & Cube Translated

File Edit Design View Help

translate([0,15,0]) {
sphere(r=10);
cube([1,5,25]);

}

Creating a centered cube
File Edit Design View Help

translate([0,15,0]) {
sphere(r=10);
cube([1,5,25], center=true):

}

BN

Special Arc Control variables

= $fn — Normally set to zero (0) to allow $fa and $£s
to take effect. If set to a number, all circles are
made with exactly $fn straight line fragments.

= $fa — Minimum angle for a fragment. Number of
fragments = 360 / $fa. Defaults to 12 (i.e. 30
fragments for a full circle)

= $fs — Minimum fragment size. Defaults to 2. Very
small circles will have a smaller number of
fragments than $fa specifies.

Just use $fn

= $fn is the easiest to use — If you want circles,

cylinders, and spheres to be smoother, increase
$fn.

= The larger $fn is, the longer calculations take and
the more vertices / file size your exported models
will have.

= Can set globally, or pass to specific shapes
individually.

$fn example

File Edit Design View Help

sphere(r=10, $fn=>5);

translate([0,0,-20])
sphere(r=10, $fn=30);

Modules

Like functions, but can affect sub-trees that follow
them, so can be used to implement complex
transformations as well as objects.

Allow you to reuse code.
Can accept parameters.

Use a curly-brackets to deliniate the sub-tree of
code that 1s the module.

Have local variable names.

Variable Scope

= root/global scope 1s different from within a module,
sO you can re-define a variable within a module
without affecting its value outside of the module.

= Reminder: Because variables are set at compile
time 1nstead of run time, you can not re-assign a
variable inside of an if sub-tree.

HexNut Module

File Edit Design View Help

module hexNut(wrenchSize,thickness) {
$fa = 0.5;

$fs = 0.5;

apothothem = wrenchSize / 2; //Center to midpoint of side
// Calculate the size of the hexagon side:

side = 2 * apothothem * tan(180/ 6) ;

// Draw the hexagon as a union of 3 rectangular cubes
color([128/255,100/255,200/2551])

union() {

for (i=[0: 2])

rotate([0,0,i*60])
translate([-(side/2),-(wrenchSize/2),0])
cube([side,wrenchSize,thickness]);

} // end union
} // end module hexNut(wrenchSize, thickness)

// Call the module]|
hexNut(5.9, 2.5);

L

Parsing design (AST generation)...

Compiling design {CSG Tree generation)...
Compilation finished.

Compiling design (C5G Products generation)...
PolySets in cache: 3

Polygons in cache: 870

CGAL Polyhedrons in cache: 0

Vertices in cache: 0

Compiling design (CSG Products normalization)...
Normalized CSG tree has 3 elements

CSG generation finished.

Total rendering time: 0 hours, 0 minutes, 0 seconds
Saved design

Just use $fn

File Edit Design View Help

cylinder(h=2.5, r=5.9/2, $fn=6);

T~

/

Make Spheres

File Edit Design View Help
module makeSpheres(howMany)
{
for (i =[0: howMany])
{
rotate(i*360 / howMany)
translate([0,10,0])
sphere(r=2, $fn=30);

}// end for
} // end module

makeSpheres(1

); I

Make Spheres

File Edit Design View Help

module makeSpheres(howMany)

{
for (i = [0: howMany])

{
rotate(i*360 / howMany)

translate([0,10,0])
sphere(r=2, $fn=30); —1
}// end for
} // end module

makeSpheres(2

); I

Make Spheres

File Edit Design View Help
module makeSpheres(howMany)

{
for (i =[0: howMany])

{ \
rotate(i*360 / howMany) ﬂ
translate([0,10,0])

sphere(r=2, $fh=30);

}// end for P ™
} // end module

); I

makeSpheres(3

Make Spheres

File Edit Design View Help

module makeSpheres(howMany)

{
for (i = [0: howMany])

{
rotate(i*360 / howMany) B Y
translate([0,10,0])

sphere(r=2, $fn=30);

}// end for ’

} // end module

makeSpheres(5

); I

Iteration via for loops

= for (variable = <vector>) <sub-tree> - variable 1s
assigned to each item 1n the vector and the sub-
tree 1S executed.

= for (variable = <range>) <sub-tree>

= Range = [<start>: < end> |
= Range = [<start> : <increment> : <end> |

= Note: Range syntax uses colons, and the resulting
range includes the start and end points

for - Range

File Edit Design View Help
for (i=1[0:10} 40])
{

translate([0,i,0])
sphere(r=4, $fn=30);

}
// 0, 10, 20, 30, 40

for - Vector

File Edit Design View Help
for (1 =[0,10,30])
{

translate([0,i,0])
sphere(r=4, $fn=30);
}

// 0, 10, |30

for (multiple variables)
- range and vector

File Edit Design View Help

for(x=1[0:10: 40],
y = [5,15,30])

{
translate([x,y,0]) ‘ ﬁ ﬁ “ q

sphere(r=4, $fn=30);

|
} |
// Rows at 5, 15, 30 'ﬂ ‘ ﬂ q q
/| Spheres on each column at: .8 i _ |]
e B EBEL
- ||"||

if statements

= Syntax looks about how you would expect.

= Conditionally executed sub-tree based upon
boolean expression with optional else clause.

= Come 1n useful 1f you want to have

= two different versions of the object (different bolt
patterns, adapter plates, etc..)

= Different styles/shapes based upon user parameters.

= “debug” vs "regular’” mode.

if - syntax

If (<boolean Expression >)
<executes on true>

} else {
<executes on false>

J

if - example

File Edit Design View Help

BoxSize = 16;

if (BoxSize > 15) {
cube([BoxSize,BoxSize,BoxSize]);

} else {
cylinder(r=BoxSize/2, h=BoxSize);

}

if - example

File Edit Design View Help

BoxSize = 10:;

if (BoxSize > 15) {
cube([BoxSize,BoxSize,BoxSize));

} else {
cylinder(r=BoxSize/2, h=BoxSize);

}

Constructive Solid Geometry (CSG)

= Consists of modeling complex parts as unions,
intersections, and differences of (relatively)
simpler parts.

= The hull and minkowski transformations are also
useful for creating compound objects.

Making a hollow box

= Make a large cube for your outside dimensions.

= Make a smaller cube for your “inside’” dimensions.

= Translate the smaller cube inside the larger cube
(and have 1t stick out the top by a very small
amount such as 0.01) —

= It has to ”poke out” of the top just a little bit so that
the top face 1s definately open!

Two Cubes

File Edit Design View Help

color([1,0,0])
cube([10,10,5]);

translate([1,1,2])
cube([8,8,3.01]);

Hollow Box

File Edit Design View Help

difference() {
| cube([10,10,5]);

translate([1,1,2])
cube([8,8,3.01]);
} // end difference

Half Sphere - intersection

File Edit Design View Help

intersection() {
cube([10,10,10],
center=true):

translate([0,0,-5])

sphere(r=4, $fn=30);
} // end difference

More than one way to skin a cat

File Edit Design View Help
difference() {

translate([0,0,-5])
sphere(r=4, $fn=30);

cube([10,10,10],
center=true):

} // end difference

Order Maters for Difference!

File Edit Design View Help

difference() {
cube([10,10,10],
center=true);

translate([0,0,-5])

sphere(r=4, $fn=30);
} // end difference

hull

File Edit Design View Help

hull() {
translate([0,0,-4])
sphere(r=4, $fn=30);

cube([10,10,5],
center=true):

} // end hull

Modifier characters

= Characters (#,!,%,*) prepended to objects to modity
how they are processed.

= Generally used to visualize what 1s happening, try
out a limited set of code without other code
interfearing, etc.

= Most useful 1s the # or Debug Modifier, that draws
objects 1n transparent pink for visualization
purposes.

intersection — Debug View

File Edit Design View Help

intersection() {
#cube([10,10,10],
center=true);

translate([0,0,-5])

#sphere(r=4, $fh=30);
} // end difference

Other Modifier Characters

The other modifier characters actually affect how
your output 1s generated.

% - background modifier - draws the sub-
tree/object with transparent gray, but ignores it
for all other rendering purposes.

| - root modifier — Ignore everything ELSE in your
file, and only render this sub-tree!

* - disable modifier — Disable/ignore this subtree.

Resource Links

= Downloads:

= User Manual:

http://www.openscad.org/
http://en.wikibooks.org/wiki/OpenSCAD_User_Manual

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

