OpenSCAD Example Projects

- Jay Summet
- jay@summet.com

OpenSCAD

- Open Source parametric design tool
- Executables for Windows, Mac, Linux
- Free to distribute, free to use, cross-platform
- Converts textual instructions into 3D shapes
- Supports Constructive Solid Geometry (CSG) modeling

Resource Links

Downloads:

http://www.openscad.org

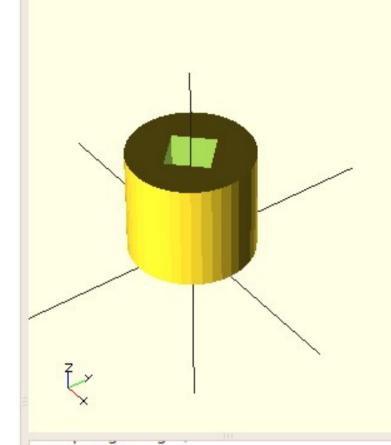
• User Manual:

http://en.wikibooks.org/wiki/OpenSCAD_User_Manual

Clock Winding Key

- First, get the fit correct.
 - Measure the interface, design the connection.
 - Print a test part, make sure it fits.
 - Repeat until the fit is correct.
- Second, design the rest of the key.

Missing a winding key



Measure the parts!


```
File Edit Design View Help
fn=40;
outsideDiameter = 8;
insideDiameter = 4;
keyDepth = 7;
numSides = 4;
difference() {
cylinder(r=outsideDiameter/2,
        h=keyDepth);
translate([0,0,-0.01])
 cylinder(r=insideDiameter/2,
        h = keyDepth + 0.02,
        $fn=numSides);
} // end difference
```


generation)...

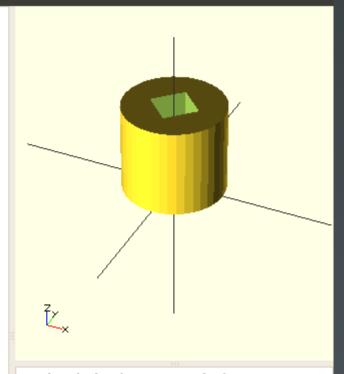
PolySets in cache: 20 Polygons in cache: 4281

CGAL Polyhedrons in cache: 5

Vertices in cache: 1112

Compiling design (CSG Products

normalization)

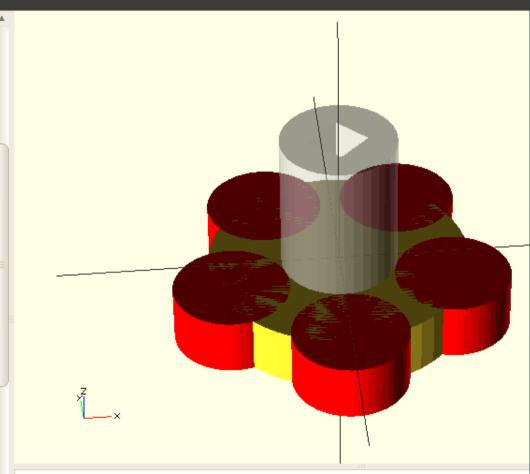

Does it fit?

- Print a small test piece to see if it fits.
- With measurements this small, it is likely to not fit, as consumer level 3D printers and slicing software are not 100% accurate. (Plastic oozes inside curves, etc...)
- Figure out how much larger/smaller dimensions need to be for a good fit using small test parts that print fast and don't waste plastic.

Modulize it!

File Edit Design View Help

```
module keyShaft(outsideDiameter,
   insideDiameter,
   keyDepth,
   numSides)
 fn=40:
 difference() {
 cylinder(r=outsideDiameter/2,
         h=keyDepth);
 translate([0,0,-0.01])
   cylinder(r=insideDiameter/2,
         h = keyDepth + 0.02,
         $fn=numSides);
 } // end difference
} // end module
keyShaft(8, 4,7, 4);
```

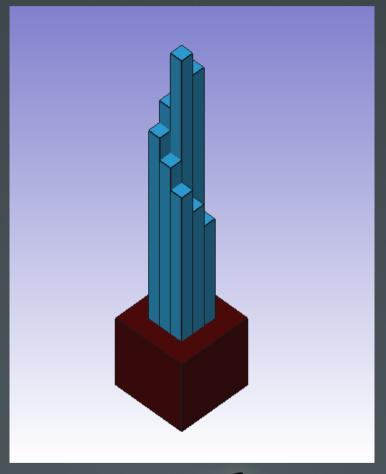


Parsing design (AST generation)...
Compiling design (CSG Tree generation)...
Compilation finished.
Compiling design (CSG Products generation)...
PolySets in cache: 2
Polygons in cache: 48
CGAL Polyhedrons in cache: 0
Vertices in cache: 0
Compiling design (CSG Products normalization)...
Normalized CSG tree has 2 elements
CSG generation finished.
Total rendering time: 0 hours, 0 minutes, 0 seconds

Add the any-old-size parts

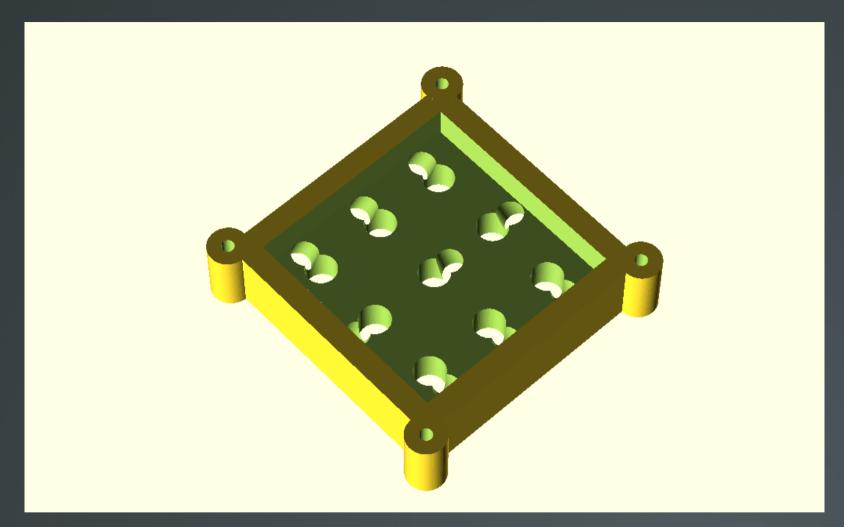
```
<u>F</u>ile <u>E</u>dit <u>D</u>esign <u>V</u>iew Help
```

```
module keyBase()
 fn=50;
 union() {
   translate([0,0,-4]) {
   cylinder(r=9,h=4);
   // Outside nubs.
   color([1,0,0])
   for (i = [0:6]) {
      rotate([0,0,i*72 + 72/2])
       translate([0,8,0])
        cylinder(r=4,h=4);
     } // end for
  } // end translate down.
 } // end union.
} // end module
```

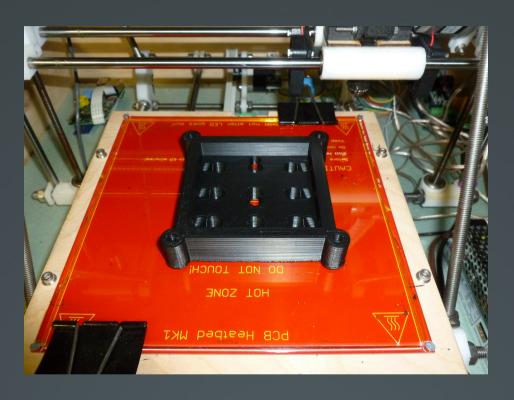


Parsing design (AST generation)... Compiling design (CSG Tree generation)... Compilation finished.

Retain ability to print test part alone

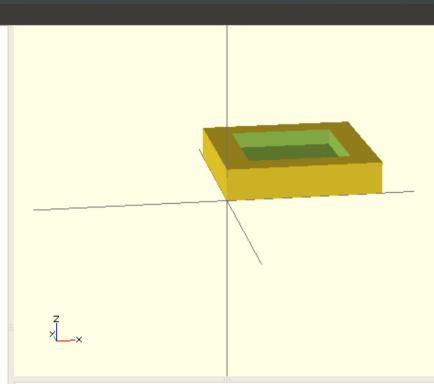
```
File Edit Design View Help
testShaft = false;
if (testShaft == true) {
  keyShaft(8, 4,10, 4);
} else {
  union() {
   keyShaft(8,4,10,4);
   keyBase();
```


New Example – Bubble Display Base

- Bubble Display made up of a square of nine one-inch square acrylic tubes.
- Each tube has an air nozzle, and an associated RGB color controlled LED that need to have a hole.


Final Design

Bottom & Printed


Top

Step 1 – Cut out the main box

```
tubeSize = 26;
outSideWall = 20:
bracketHeight = 24;
difference() {
 // Main "box"
 cube([3*tubeSize+outSideWall*2,
         3*tubeSize+outSideWall*2,
         bracketHeight]);
// Cutout for 3X3 tubes
translate([outSideWall,outSideWall, bracketHeight/2])
 cube([3*tubeSize,3*tubeSize,bracketHeight/2+0.1]);
```

File Edit Design View Help

Parsing design (AST generation)...
Compiling design (CSG Tree generation)...
Compilation finished.
Compiling design (CSG Products generation)...
Polygons in cache: 12

Step 2 – Cut out holes for air hoses

File Edit Design View Help

```
difference() {
// Main "box"
 cube([3*tubeSize+outSideWall*2,
        3*tubeSize+outSideWall*2,
        bracketHeight]);
// Cutout for 3X3 tubes
translate([outSideWall,outSideWall, bracketHeight/2])
 cube([3*tubeSize,3*tubeSize,bracketHeight/2+0.1]);
// Holes for air hoses:
for(x = [0:2]) {
   for(y = [0:2]) {
     translate([ outSideWall+x*tubeSize + (tubeSize/2),
           outSideWall+y*tubeSize + (tubeSize/2), -0.1])
     cylinder(r=4.5,h=bracketHeight/1.75);
  } // end for y
 } // end for X
```


complining acaign (coo nee generation)...

Compilation finished.

Compiling design (CSG Products generation)...

PolySets in cache: 3 Polygons in cache: 29

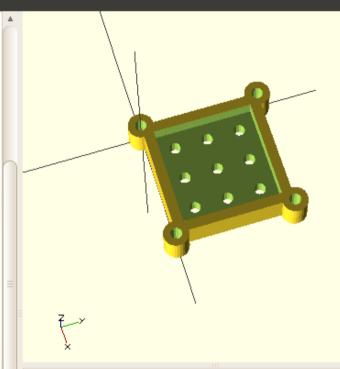
CGAL Polyhedrons in cache: 0

Vertices in cache: 0

Compiling design (CSG Products normalization)...

Normalize count: 11

Normalized CSG tree has 11 elements

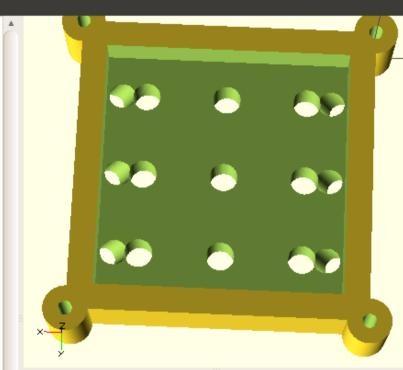

CSG generation finished.

Total rendering time: 0 hours, 0 minutes, 0 seconds

Saved decign

Step 3 – Holes for mounting screws

```
File Edit Design View Help
 // corner screw surrounds:
  cylinder(r=10,h=bracketHeight);
  translate([3*tubeSize+2*outSideWall, 0,0])
    cylinder(r=10,h=bracketHeight);
  translate([0, 3*tubeSize+2*outSideWall,0])
    cylinder(r=10,h=bracketHeight);
  translate([3*tubeSize+2*outSideWall, 3*tubeSize+2*ou
tSideWall.01)
    cylinder(r=10,h=bracketHeight);
  } /// end union
// Holes for screws at corners:
 for(x = [0:1]) {
   for(y = [0:1]) {
     translate([ x* (tubeSize*3 + outSideWall*2) ,
           y*( tubeSize*3 +outSideWall*2) , -0.1] )
     cylinder(r=4.5,h=bracketHeight+0.2);
   } // end for y
  } // end for X
```



Parsing design (AST generation)...
Compiling design (CSG Tree generation)...
Compilation finished.
Compiling design (CSG Products generation)...
PolySets in cache: 6
Polygons in cache: 84
CGAL Polyhedrons in cache: 0
Vertices in cache: 0
Compiling design (CSG Products normalization)...
Normalize count: 27

Normalized CSG tree has 27 elements CSG generation finished.

Total rendering time: 0 hours, 0 minutes, 0 seconds

Step 4 – Six symetrical LED holes

```
File Edit Design View Help
 // Holes for RGB Color Controlled LED, six on sides:
 for (i = [0:2]) {
  // One side
  translate([outSideWall,
              outSideWall+tubeSize/2 + i*tubeSize,-2])
    rotate([0,20,0])
      cylinder(r=4, h=bracketHeight);
 // Other side...
 translate([outSideWall+tubeSize*3,
            outSideWall+tubeSize/2 + i*tubeSize,-2])
    rotate([0,-20,0])
      cylinder(r=4, h=bracketHeight);
 } // end for
} // End Difference
```


Polygons in cache: 412 CGAL Polyhedrons in cache: 0

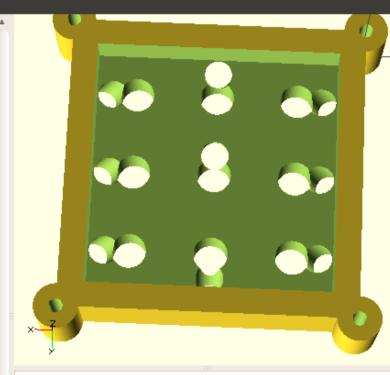
Vertices in cache: 0

Compiling design (CSG Products normalization)...

Normalize count: 29

Normalized CSG tree has 29 elements

CSG generation finished.

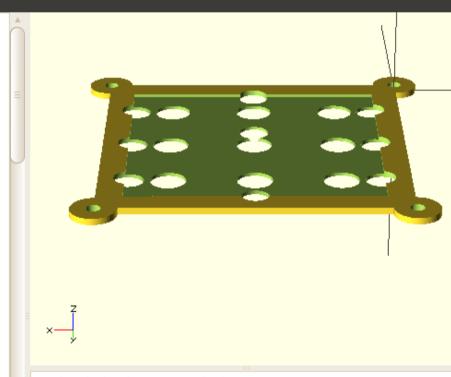

Total rendering time: 0 hours, 0 minutes, 0 seconds

Cayod docid

Step 5 – The other 3 holes

```
File Edit Design View Help
// Top in the "center" row:
 translate([outSideWall+tubeSize*1.5,outSideWall,-2])
    rotate([-20,0,0])
     cylinder(r=LEDHoleRadius, h=bracketHeight+4);
// "center" row: center one is different and squished!
 translate([outSideWall+tubeSize*1.5,
             outSideWall+tubeSize*1.1,-2])
    rotate([-15,0,0])
     cylinder(r=LEDHoleRadius, h=bracketHeight+4);
// Bottom in the "center" row:
 translate([outSideWall+tubeSize*1.5,
            outSideWall+tubeSize*3,-2])
    rotate([20,0,0])
     cylinder(r=LEDHoleRadius, h=bracketHeight+4);
} // End Difference
```


Parsing design (AST generation)...
Compiling design (CSG Tree generation)...
Compilation finished.
Compiling design (CSG Products generation)...
PolySets in cache: 12
Polygons in cache: 576
CGAL Polyhedrons in cache: 0
Vertices in cache: 0
Compiling design (CSG Products normalization)...
Normalize count: 32


Normalized CSG tree has 32 elements CSG generation finished. Total rendering time: 0 hours, 0 minutes, 0 seconds

Print a test piece in less than 12 hours

```
tibe Edit Design View Help
tubeSize = 26;
outSideWall = 8;
bracketHeight = 2; // <------See what I did here?

airHoleRadius = 5.5;
LEDHoleRadius = 4.5;
$fn=80;

difference() {
    union() {
        // Main "box"
        cube([3*tubeSize+outSideWall*2,3*tubeSize+outSideWall*2,bracketHeight]);
}</pre>
```


If you have done your parametric design correctly, resizing the height to a very small number just works.

Questions?

- http://www.openscad.org
- jay@summet.com

