
Version 1.1 1 CS4400 Summer 2014

CS4400 Database Project:
Georgia Tech Tutors

Summer 2014

Project Overview
The purpose of this project is to analyze, specify, design, implement, document, and

demonstrate a database management information system called Georgia Tech Tutors (GTT).

The project will proceed in three phases as outlined in the Classical Methodology for

Database Development: Analysis & Specification, Design, and Implementation & Testing. The

system should be implemented using a Database Management System (DBMS) that supports

standard SQL queries. Class administrators will provide you with information about how to

access a college-managed MySQL server in order to implement your database. Your professor

must approve alternative implementations. Under no circumstances may you use a tool that

automatically generates SQL or automatically maps programming objects into the database.

The three phases of the project cover the following work-processes from the Classical

Methodology for Database Development. The due dates for each phase appear in the table

below.

Phase Phase Description Due Date

I Analysis & Specification June 3

II Design June 24

III Implementation & Testing July 22

 Demonstration July 23-25

Groups
Project groups must have 2 or 3 members. A group may remove a member from further

participation in the group when phase I is turned in or when phase II is turned in. A written

(email) notification must be provided to the professor at that time.

Version 1.1 2 CS4400 Summer 2014

Phase I – Analysis & Specification
The phase I deliverables include:

1. A cover page including the name, class section, email address, and T-Square

username of each group member.

2. A list of contributions of each team member.

3. An Information Flow diagram showing the primary documents and tasks of the

system and the flow of data among them. An example of this deliverable can be

found in Appendix B – Sample EER Diagram.

4. The data model for your system in the form of an Enhanced Entity Relationship (EER)

diagram. The EER diagram must capture the constraints of the system as fully as

possible. For example, all relationship types should have cardinality constraints, all

keys should be identified, and total participation constraints should appear where

applicable. An example of this deliverable can be found in Appendix B – Sample EER

Diagram.

5. A list of business constraints that will be enforced. Do not include any constraints that

can be shown in the EER diagram, but rather business logic related constraints that

cannot be expressed in EER. The constraints should be written in terms of the Entity

Types, Relationship Types and Attributes of your EER diagram. An example of this

deliverable can be found in Appendix C – Sample Constraints.

6. A list of any assumptions made, including explanations. You are allowed to make up

additional reasonable assumptions and constraints as long as they do not conflict with

the specified constraints and requirements. If possible, those additional assumptions

and constraints should be included in the EER diagram.

Phase II – Design
The phase II deliverables include:

1. A cover page including the name, class section, email address, and T-Square

username of each group member.

2. A list of contributions of each team member.

3. An updated copy of the EER diagram and Information Flow diagram including any

corrections made since phase I. Alternatively, the group may choose to adopt the EER

diagram and Information Flow diagram from the sample solution.

Version 1.1 3 CS4400 Summer 2014

4. A relational schema diagram with primary and foreign keys identified and referential

integrity shown by arrows. An example of this deliverable can be found in Appendix D

– Sample Relational Model Diagram.

5. CREATE TABLE SQL statements, including domain constraints, integrity constraints,

primary keys, and foreign keys. An example of this deliverable can be found in

Appendix E – Sample CREATE TABLE Statements.

6. SQL statements and abstract code for each task. An example of this deliverable can be

found in Appendix F – Example Abstract Code + SQL.

Multiple SQL statements may be required in order to complete one task. However, in

such cases, the last SQL statement should show the output according to the

specification as much as possible. If mentioned, the returned tuples must be ordered

according to the specification. Views and nested queries may be used to support the

tasks. Complex queries should be broken down into views to make the query more

readable.

Phase III – Implementation & Testing
There are two options for phase III: lightweight and heavyweight. The lightweight option

requires a demonstration of working SQL statements that could be used to perform all tasks

specified in the project description (i.e., the set of tasks identified in the Information Flow

diagram). The queries will be executed against a database created by each group and pre-

populated with sample data. A query interface such as phpMyAdmin or the MySQL Query

Browser will be used to execute your queries.

The heavyweight option is to implement a working application including a graphical user

interface (GUI) with all functionality described in the project description. Under this option,

the SQL statements will be embedded in a host language, such as PHP or Python.

For both lightweight and heavyweight options, you will need to generate sample data for your

database, which will be used for your demo.

The deliverables for phase III include:

1. A coverpage including the name, class section, email address, and T-Square username

of each group member.

2. A list of contributions of each team member.

3. A copy of the relational schema diagram from phase II, including any revisions.

4. A copy of the CREATE TABLE statements from phase II, including any revisions.

5. A relational database pre-populated with sample data.

Version 1.1 4 CS4400 Summer 2014

6. A set of working SQL statements for all tasks (lightweight option).

7. A functional application with embedded SQL statements (heavyweight option).

Grading
Phase I and Phase II of the project are each worth 10% of your final grade. Credit for phase III

depends on the implementation option you choose: the heavweight option counts for 20% of

your final grade and the lightweight option counts for 5%.

In addition, when phase 3 is submitted, each group member will need to sign and submit the

following statement:

I certify that I have contributed XX% of effort to the overall project and I agree to be graded

accordingly.

 Signed:______________

The XX value should ideally be the same for all members of the project, however if one or

more of you do not pull your weight during the project you should list an accordingly smaller

percentage.

Overview of Georgia Tech Tutors (GTT)

Georgia Tech Tutors is a free, semester long appointment-based tutoring program offered to
all Georgia Tech undergraduate students. Students sign up for a one hour long tutoring
session per week per course for the entire semester. All tutoring sessions are held on campus.
Tutoring is available in many courses and varies based on availability of student tutors. All
tutors are successful undergraduate or graduate students who have made a grade of "A" in
the course(s) they tutor and have a minimum overall GPA of 3.0. They are available for at
least 5 hours per week during the day. Our tutors also have recommendations from one or
more Georgia Tech faculty. Our database system should contain data for fall 2013, spring
2014 and summer 2014 semesters (i.e., the current academic year).

The following sections contain a functional description of the GTT system along with some
screen mockups. We should note that we will not implement a complete real-world system
for this application but rather a subset of the system that is described in this document. The
user interfaces depicted in this project description merely serve as examples to guide your
thinking. Your project’s interface may look different and that is fine—even encouraged! For
example, you might choose to split up some interfaces we have shown on a single screen into
multiple screens. You might choose to use popup windows instead of refreshing the page. A
complete reorganization of the user interface is acceptable as long as your application
supports the same functionality as described below. If you choose the heavyweight option,
you may implement the project as a traditional standalone application (e.g., using Python or
Java GUIs) or as a web application (e.g., using a web scripting language like PHP). Your project

Version 1.1 5 CS4400 Summer 2014

is not graded on its aesthetic appeal, but on its functionality as it relates to the application
requirements.

Logging In

The GTT login screen is shown in Figure 1. All users are uniquely identified by his or her

Georgia Tech ID number. A user can be a student who needs a tutor, or a student who

is/wants to be a tutor, or a professor who wants to recommend a tutor, or a system

administrator. A user enters a valid Georgia Tech ID number and password combination for

logging into the system and selects the OK button. Users obtain a password by contacting the

GTT Administrators offline at which time the type of user access is determined by the

administrators. In addition other information about a user such as name, email and

telephone number is input into the system by the administrators. In addition, for tutors,

transcripts would be required but we will not store them in our system. If invalid login

credentials are input then an error message should be displayed and the user should be asked

to retry.

Figure 1 – GTT Login Screen

Once a user has successfully logged in, then a main menu of options is displayed as in Figure

2. Options on the main menu are restricted to the type of user. For example, a user who is

only a student type can only search for a tutor, schedule a tutor and rate a tutor. A user

would select a button corresponding to the task they wish to perform. A user may also exit

the GTT system by selecting the Exit button.

Version 1.1 6 CS4400 Summer 2014

Figure 2 – GTT Main Menu Screen

At this point we will describe the individual tasks that may be performed by the different

types of users: Student, Tutor, Professor, Administrator.

Student User

The Student user has 3 tasks that may be performed. The first is to search for a tutor for a

particular course for particular days/times. This is shown in Figure 3. As input, the student

would enter the course (school and number) and a set of days/times when they are free to

be tutored. The course information should be provided by the system via a drop down box.

To execute the search, the user selects the OK button. Note, that a student may only receive

one hour of tutoring per week per course. The output of this search (i.e., information about

the available tutors) is displayed on the screen. The output is ordered by average student

rating in descending order. At this point a student may decide to return to the main menu by

selecting the cancel button or they may decide to schedule one of the available tutors by

selecting the schedule a tutor button.

Version 1.1 7 CS4400 Summer 2014

Figure 3 – Student Search Screen

If the student chooses to schedule one of these tutors then the screen in Figure 4 will appear.

This screen contains some of the tutor information from the previous screen along with the

days and times the tutor is available. There is a check box next to each tutor. The student

can check only one box and then select the OK button to schedule that particular tutor. After

that, information is stored in the database and the system will return the user to the main

menu. If the student chooses the Cancel button then the user is returned to the main menu

without selecting a tutor.

The last task a student user may perform is to rate a tutor. A student can only rate a tutor

who they actually use as a tutor during the current semester. The Rate a Tutor screen is

shown in Figure 5. The student would fill in all the information on the screen and then select

the OK button. The course information is provided by the system via a drop down box. The

Version 1.1 8 CS4400 Summer 2014

evaluation would be stored in the database. If the OK button is selected without filling in the

required information then the user would be returned to the main menu without any changes

being made.

Figure 4 – Schedule a Tutor Screen

Figure 5 – Rate a Tutor Screen

Version 1.1 9 CS4400 Summer 2014

Tutor User

The Tutor user has 2 tasks that may be performed. The first is to apply for a tutor position.

This is shown in Figure 6. As input, the prospective tutor would enter three types of

information: basic student information, course information and availability information. The

check box next to each course indicates whether the student had been a graduate TA for the

course. This applies only to graduate students. Once the information is entered on the

screen the user would select the OK button. The entered information would be inserted into

the database and the user would be returned to the main menu. If the OK button is selected

without entering the required information then the user is simply returned to the main menu

without inserting anything into the database.

The second task, a tutor may do is to retrieve his/her tutor schedule. This is shown in Figure

7. Although a tutor may only see his/her own schedule, we still require the tutor to enter

their Georgia Tech ID number. The reason for this, is that in the future we plan to use this

interface for administrators, so that they can look up specific tutor schedules. Selecting the

associated OK button would execute the search in the database. The result of the query

would is displayed. Selecting the second OK button returns the user to the main menu.

Professor User

The Professor user has a single task that may be performed. The professor enters a

recommendation for a single tutor. The necessary information is shown in Figure 8. The

professor selects the OK button once the information has been entered. This inserts the

information into the database and then returns the user to the main menu. If nothing is

entered, selecting the OK button returns the user to the main menu without inserting

anything into the database. Note that a professor may only enter a recommendation for a GT

ID number of a registered tutor.

Version 1.1 10 CS4400 Summer 2014

Figure 6 – Apply for Tutor Position Screen

Version 1.1 11 CS4400 Summer 2014

Figure 7 – Display Tutor Schedule Screen

Figure 8 – Professor Recommendation Screen

Version 1.1 12 CS4400 Summer 2014

Administrator User

The Administrator user has a two tasks that may be performed. These two tasks produce

summary reports about the tutoring activity per course for a particular semester or

combination of semesters for the current academic year. Both reports require the

administrator to select the semesters of interest for the current academic year. The output

of both reports is ordered by course and the calendar ordering of semester (ie., fall, spring,

summer). In Figure 9, we show the first summary report. It lists, for each course, the

number of students that used tutors and the number of tutors that met with those students.

Selecting the first OK button triggers the query on the selected semesters. Selecting the

second OK button returns the user to the main menu. In Figure 10, we show the second

summary report. It lists, for each course, the number of graduate student tutors who

were/were not previous graduate TAs for each course and their average student ratings.

Selecting the first OK button triggers the query on the selected semesters. Selecting the

second OK button returns the user to the main menu.

Version 1.1 13 CS4400 Summer 2014

Figure 9 – Administrator Summary Report #1 Screen

Figure 10 – Administrator Summary Report #2 Screen

Version 1.1 14 CS4400 Summer 2014

Appendix A – Sample Information Flow Diagram

Database

Log In

Register
List Item

Log In Form

Registration
Form

New Item
Form

Search
Items

Search
Criteria

Search
Results

View Item

Item
Description

Bid/Get It
Now

View
Ratings

Ratings

Add
Rating

View Auction
Results

Auction
Results

Category
Report

User
Report

View Category
Report

View User
Report

Edit Item
Description

Delete
Rating

Calculate
Winner

Version 1.1 15 CS4400 Summer 2014

Appendix B – Sample EER Diagram

DateAndTime

User

AdminUser

U

Username

Name

First

Last

Password

Position

ItemCategory

Name

Describes

GetItNowPrice

MinSalePrice

AuctionEndDate

Returns?

Condition

Rates

DateAndTime

Stars

Comment

BidBid

BidsOnBidsOn

ForFor

Amount

ItemID

Winner?

1 N

N

M

Lists

1

N

1

N

N

1

Bid

Name

Description

StartingBid

Version 1.1 16 CS4400 Summer 2014

Appendix C – Sample Constraints

No. Entity Types, Relationship Types, and

Attributes involved

Constraint Definition1

1 Item.StartingBid
2
, Item.GetItNowPrice Item.StartingBid < Item.GetItNowPrice

2 Lists, User, Item, BidsOn, Bid, For The user who lists an item cannot also

bid on the same item.

3 Bid.Amount, Bid.DateAndTime For any two Bids B1 and B2 on the

same item, if B1.DateAndTime >

B2.DateAndTime then B1.Amount >

B2.Amount

(Later bids must be for a greater

amount than prior bids.)

4 Rates.Stars 1 <= Rates.Stars <= 5

5 Lists, User, Rates, Item A user cannot rate an item that he or

she lists.

1
 Constraint definition may be described in plain English or written using basic logic and mathematical operators.

2
 The notation XXX.YYY means that YYY is an Attribute of the Entity Type XXX or Relationship Type XXX.

Version 1.1 17 CS4400 Summer 2014

Appendix D – Sample Relational Model Diagram

Version 1.1 18 CS4400 Summer 2014

Appendix E – Sample CREATE TABLE Statements

CREATE TABLE User (

 Username VARCHAR(30) PRIMARY KEY,

 Password VARCHAR(30) NOT NULL,

 FirstName VARCHAR(50) NOT NULL,

 LastName VARCHAR(50) NOT NULL

)

CREATE TABLE AdminUser (

 Username VARCHAR(30) PRIMARY KEY,

 Position VARCHAR(50) NOT NULL,

 FOREIGN KEY (Username) REFERENCES User(Username)

)

CREATE TABLE Category (

 CategoryName VARCHAR(30) PRIMARY KEY

)

CREATE TABLE Item (

 ItemID INT AUTO_INCREMENT PRIMARY KEY,

 Username VARCHAR(30) NOT NULL,

 Name VARCHAR(250) NOT NULL,

 Description VARCHAR(4000) NOT NULL,

 Condition INT NOT NULL,

 StartingBid DECIMAL(10,2) NOT NULL,

 MinSalePrice DECIMAL(10,2) NOT NULL,

 GetItNowPrice DECIMAL(10,2),

 AuctionEndDate DATETIME NOT NULL,

 Returns? BIT NOT NULL,

 CatName VARCHAR(30) NOT NULL,

 FOREIGN KEY (Username) REFERENCES User(Username),

 FOREIGN KEY (CatName) REFERENCES Category(CategoryName)

)

CREATE TABLE Bid (

 Username VARCHAR(30) NOT NULL,

 ItemID INT NOT NULL,

 DateAndTime DATETIME NOT NULL,

 Amount DECIMAL(10,2) NOT NULL,

 PRIMARY KEY (Username, ItemID, DateAndTime),

FOREIGN KEY Username REFERENCES User(Username),

 FOREIGN KEY ItemID REFERENCES Item(ItemID)

)

CREATE TABLE Rating (

 Username VARCHAR(30) NOT NULL,

 ItemID INT NOT NULL,

 DateAndTime DATETIME NOT NULL,

 Comment VARCHAR(4000) NOT NULL,

 Stars INT NOT NULL,

 PRIMARY KEY (Username, ItemID),

 FOREIGN KEY Username REFERENCES User(Username),

 FOREIGN KEY ItemID REFERENCES Item(ItemID)

)

Version 1.1 19 CS4400 Summer 2014

Appendix F – Example Abstract Code + SQL

Task: List New Item

//show category listing on new item form

SELECT CategoryName FROM Category ORDER BY CategoryName

//read in parameters from form

$ItemName = read(“ItemName”)

$ItemDescription = read(“ItemDescription”)

$Category = read(“Category”)

$Condition = read(“Condition”)

$StartingBid = read(“StartingBid”)

$MinSalePrice = read(“MinSalePrice”)

$AuctionDuration = read(“AuctionDuration”)

$GetItNowPrice = read(“GetItNowPrice”)

$Returns = read(“Returns?”)

//validate form data

if ($StartingBid > $GetItNowPrice) then

 error(“Starting Bid must be lower than Get It Now price.”)

 return to form

end if

if ($MinSalePrice > $GetItNowPrice) then

 error(“Minimum Sale Price must be lower than Get It Now price.”)

 return to form

end if

//calculate end date

$AuctionEndDate = Now() + $AuctionDuration

//insert new item

INSERT INTO Item (Username, Name, Description, Condition, StartingBid,

MinSalePrice, GetItNowPrice, AuctionEndDate, Returns?, CatName)

VALUES ($Username, $ItemName, $ItemDescription, $Condition,

$StartingBid, $MinSalePrice, $GetItNowPrice, $AuctionEndDate,

$Returns, $Category)

Version 1.1 20 CS4400 Summer 2014

Document Version Info

Version Notes Date

1.0 Original version 5/19/2014

