
CS 2316
Homework 4 – Lifeguard Employee Ranker
Due: Tuesday, June 3rd , before 11:55 PM
Out of 100 points

Files to submit: 1. HW4.py

This is an PAIR assignment!
This is a pair programming problem! You are expected to work with
the person you have been pared with in class, and you are both
responsible for submitting the exact same code to T-Square. Your
pair may collaborate with other students in this class. Collaboration
means talking through problems, assisting with debugging,
explaining a concept, etc. You should not exchange code or write
code for other pairs. Collaboration at a reasonable level will not
result in substantially similar code. For pair programming
assignments, you and your partner should turn in identical
assignments.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

Notes:
• Do not forget to include the required comments and collaboration statement (as

outlined on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into problems.
• Read the entire specifications document before starting this assignment.

Premise

The Supervisor at the Aquatics department needs to schedule time slots to lifeguards every week
according to their availability. To do this efficiently and fairly, they hired an Industrial Engineer
to devise a ranking system for priority. He worked with them over the summer and suggested
that each employee be given a score for ranking purposes. The IE who devised the system
graduated after the summer, and now the Aquatics Department has hired you to write python
code to rank all the employees from the CSV data they have. The IE left you a detailed report of
the ranking scheme and how the program should be coded.

The ranking scheme is as follows:

• The Rank score of a lifeguard are based on 3 equally weighted categories:

Position score, Supervisor evaluation score, Peer evaluation score.

• The employee has one of three positions (or titles): New Lifeguard, Lifeguard, and Head
Guard.

o New Lifeguards are employees that have been employed for less than a semester
(16 weeks, or 112 days). New Lifeguards gets 5 points as their Position score.

o Lifeguards are employees that have been employed for 1 semester or more (112
days or more). Lifeguards get 15 points as their Position score.

o Head Guards are employees that have been employed for at least a year (365 days
or more). Head Guards get 20 points as their Position score.

• Each employee has been evaluated by the supervisor and their peers over the summer,
thus each employee now has associated to them a..:

o Supervisor evaluation score (scale: 0 to 10), and
o Peer evaluation score (scale: 0 to 5)

• The Rank score is calculated by simply adding up the 3 scores with equal weighting.
[Rank score = Position score + Supervisor evaluation score + Peer evaluation score]

• The higher the score, better the rank. The employee with the highest score will be
awarded rank 1, the next highest will be rank 2, and so on.

• There could be conflicts where two employees have the same score, but no two
employees can have the same rank. To resolve conflicts between any two given
employees with the same rank score,

o Compare their date of employment first. The employee who was employed first
(i.e. has an earlier employment date) has higher preference.

o If they were employed on the same date, compare the Supervisor evaluation score.
The employee with higher Supervisor evaluation score has preference.

o If they were employed on the same day and have the same Supervisor evaluation
score , compare the GTID. The employee with a smaller GTID value has
preference. [Note that if they were employed on the same day, have the same
Supervisor evaluation, and are in conflict, it means that they have the same Peer
evaluation score, so we can't use the Peer evaluation score to de-conflict.]

Program specifics

The data will be provided to you in CSV format and it will change every month as lifeguards are
promoted and scored by their peers and supervisors. SE score is the Supervisor evaluation score,
PE score is the Peer Evaluation score, and Days being the Days since employment, the CSV file
will have data in the following format:

GTID, Last name, First Name, SE score, PE score, Days

An example record would be:

902345678, Burdell, George, 9, 5, 320

You have to parse the data into a dictionary that contains the GTID as its key and a list as its
value. One record in the dictionary has the format:

 Dictionary[GTID] → [(Last name, First name), SE score, PE score, Days]

An of the list (representing each record) inside the dictionary (that stores all records) would be:

Dictionary[902345678] → [(“Burdell”, “George”), 9, 5, 320]

Remember the (Last name, First name) is a tuple inside each list record.

After you have calculated the Rank Score of each employee, you should append them to the end
of the record. The records should now look like:

[(Last name, First name), SE score, PE score, Days, Rank score]

At this point, you should start ranking them, resolving the conflicts of any employees that might
have the same Rank score according to the rules mentioned above. As you give ranks to the
employees, they should be stored in a new dictionary using both the rank and GTID as the key
and a list with the following information as the value:

 Dictionary2[(Rank, GTID)] → [(Last Name, First name), Position]

This list has two items, a tuple that represents the lifeguard (lastname, firstname) and their
title/position. The key itself is also a tuple that represents the standing of the lifeguard (rank,
GTID).

Example:

Dictionary2[(4, 902345678)] → [(“Burdell”, “George”), “Lifeguard”]

Note that you must convert the Days integer into a textual (string) position/title.

Once you have ranked them and created the dictionary, you should write the records to a new
CSV file called “employeeRanks.csv” in the following format:

Rank, GTID, Last Name, First name, Position

Example record that you write out to the file would be:

4, 902345678, George, Burdell, Lifeguard

Make sure that the output file has the highest rank employee on line 1, the second highest rank
user on line 2, etc.

You will be writing the following functions. Note that they MUST have the same name and
return output as specified or the autograder will count the functions incorrect. The mainRanker
function (which you may want to write last, or first!) is what the TA's (and/or autograder) will
call to test your entire program. If you write the functions in the order we specify in this
document, you may have to write additional test code (scaffolding) that will call each function,
giving it test input and printing the returned output so that you can verify they work correctly.
We encourage you to read the description for all of the functions before you write any of them,
so that you will fully understand which functions are called by (used by) which other functions.

1. parseRecord
2. readCSVFile
3. getPositionScore
4. rankEmployees
5. writeCSVData
6. mainRanker

Function Name: parseRecord

Parameters:
string – A string which contains one record (one line) from the file.
dictionary – the data structure that will store all of the information from the file

Return Value:
dictionary – the updated data structure containing the employee information after adding

the new record.

Description:
Write a function that will accept a string parameter which contains the contents of the one line
from the file you are reading in the function readCSVFile(). This function will parse the given
string from comma separated values into a list of the following format:
[(Last name, First name), SE score, PE score, Days]
Note that the GTID, SE Score, PE Score, and Days entries will need to be converted to an
integer, while the Last name and First Name should stay as strings. You should strip any leading
or trailing whitespace from the strings. After all the values are converted properly and the list is
created, update the dictionary with the new record.
The Last name and First name are in a tuple. This list is a record of one employee and has to be
returned by this function. If the data format of this line is invalid (missing needed data), you
should raise a ValueError with a: raise ValueError statement. This value error will be
handled by the mainRanker function.

Function Name: readCSVFile

Parameters:
 none

Return Value:
dictionary – the data structure containing the employee information from the filein the

above mentioned format.

Description:
Write a function that will ask the user for ANY valid CSV file to read (for example,
“employeeInfo.csv” but DO NOT hard code this value). In the event that the user provides an
invalid file name or the file doesn’t open, you should print a message such as “Invalid file name”
and prompt the user to enter another valid file name. You should force the user to enter a valid
filename until the file successfully opens. Initialize the dictionary data structure that all of the file
data will be stored in. Afterwards, your function will then read in this file and call parseRecord
on each line to parse the information contained within that line. You must call parseRecord
inside of readCSVFile to parse each line of the file. Remember to update your dictionary with
the updated version from parseRecord. The final dictionary that is to be returned should be a
collection of lists stored in the dictionary that represent individual lifeguard records. Remember
to close the file when you’re done reading in the information. You may not use the CSV reader
module; you must implement CSV reading yourself.

Function Name: getPositionScore

Parameters:
int – Number of days the employee has been employed for.

Return Value:
tuple – (Position Score of the employee, Position/title)

Description:
Write a function that takes in the days of employment of an employee and finds the
corresponding position of the employee. The position of an employee can be one of the
following: “New Lifeguard”, “Lifeguard”, and “Head Guard”. New Lifeguards are employees
that have been employed for less than 112 days and get 5 points as their position score.
Lifeguards are employees that have been working for 112 days or more and get 15 points as their
position score. Head guards have worked for 365 days or more and get 20 points as their position
score.

Function Name: rankEmployees

Parameters:
dictionary – a data structure containing employee records with all information from the
file.

Return Value:
Dictionary2 – a data structure containing ranks and simplified employee information.

Description:

Write a function that will accept the dictionary that contains employee information after reading
the file, as a parameter. Use the contents of each record in the dictionary to calculate the Rank
score of each employee. (remember that no two employees can have the same rank score!) The
getPositionScore function should be helpful in calculating the Rank Score.

You must then append the Rank Score to the end of each record so that each record looks like:
[(Last name, First name), SE score, PE score, Days, Rank Score]
You should then rank all the employees. Be sure to resolve all conflicts where two employees
have the same Rank Score according to the rules given above. No two employees can have the
same rank. The details of how you want to resolve the conflicts and where you want to store the
ranks are up to you.

You may create a temporary list while you are ranking employees (suggested). You are most
welcome to use any helper functions that may assist you in helping rank the employees and
resolve the conflicts. Remember however that the autograder WILL NOT call any helper
functions other than the ones in this file.

Create a new empty dictionary with the key as Rank, GTID, in the following format:
Rank, GTID  [(Lastname, Firstname), Position]
Notice, (Lastname, Firstname) is still a tuple. Rank, which is part of the key in the dictionary, is
an integer value starting with 1. You will need to use the Position score given in the list to
compute the Position of employee that you need to store in the dictionary. Once your dictionary
is complete, you should return it. Note that the Position is a textual label, not a position score
(number).

Function Name: writeCSVData

Parameters:
 Dictionary – the data structure that contains the ranks and the employee information.
Return Value:

None

Description:
Write a function that will accept one parameter that is a dictionary with key as Rank of each
employee. The dictionary would have the following format:
Rank, GTID  [(Lastname, Firstname), Position]
Use this information to write all the records of this dictionary into a CSV file called
“employeeRanks.csv” in the following format:
Rank, GTID, Last Name, First name, Position
Order the records starting at the employee with the smallest rank (1) and moving up in rank as
you write the file until you have written out the details for all of the employees. Remember to
close the file when you’re done writing in the information.

Function Name: mainRanker

Parameters:
 None
Return Value:

Bool – True if everything went smoothly, or False if their was an error reading or writing
files.

Description:
This is the main function or the driver function of this Ranking code that will make calls to some
of the other functions. This function essentially makes calls to readCSVFile, rankEmployees, and
then writeCSVData. There are no parameters, but you must return True if the code ran without
any problems. If there was an error while reading the file, writing the file, or in the formatting of
the given data, the code should not crash. Instead, you should use try and except at various points
in this method to make sure all the possible errors are caught. If an error is encountered, return
False. (You do NOT have to recover from an error other than if the user enters an invalid file
name.)

Grading:

You will earn points as follows for each function that works correctly according to the given
specifications.

parseRecord 10

Properly handles invalid strings by raising a value error
Records correctly formatted data into the dictionary

3
7

readCSVFile 25

Properly handles invalid files
Properly reads multi-line files
Properly passes each line into parseRecord function (i.e. update dictionary)
Returns correctly formated dictionary
Closes file before exiting function

5
5
5
5
5

getPositionScore 5

Returns the correct tuple (position score, title) 5

rankEmployees 30

Calculates the ranks correctly taking care of all conflicts
Creates a new dictionary
Updates dictionary with correct key/value pairs
Correctly returns the dictionary of ranks

10
5

10
5

writeCSVData 20

Properly opens the file to write
Uses the correct filename
Properly writes the data in the correct format
Closes the file before exiting function

3
2

10
5

mainRanker 10

Properly makes all the required function calls
Does not let the program crash
Returns True or False correctly in the appropriate situations

3
5
2

