
CS 1301
Individual Homework 3 – Conditionals & Loops
Due: Friday, January 31st, before 11:55pm
Out of 100 points

Files to submit: 1. HW3.py

THIS IS AN INDIVIDUAL ASSIGNMENT!

You should work individually on this assignment. You may collaborate with other
students in this class. Collaboration means talking through problems, assisting with
debugging, explaining a concept, etc. Students may only collaborate with fellow students
currently taking CS 1301, the TA's and the lecturer. You should not exchange code or
write code for others. For individual assignments, each student must turn in a unique
program. Your submission must not be substantially similar to another student's
submission. Collaboration at a reasonable level will not result in substantially similar
code.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

Notes:
• Don’t forget to include the required comments and collaboration statement (as outlined

on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into problems.

Simple Functions:
You will write a few python functions for practice with the language. In your submission file, include a
comment at the top with your names, section, GTID/Email, and your collaboration statement. Also include
each of the following functions:

1. letterGrade

2. countLetter

3. eyeForI

4. wordMirror

5. encryption

6. guessPassword

7. countDown

8. numberBowTie

9. printTimes

Function Name: letterGrade (10pts)
Parameters:

grade – an integer/float representing the numerical grade
Return:

A string – ‘You made a(n) [letter grade].’
Test Cases:

letterGrade(92) returns: “You made a(n) A.”
letterGrade(72.5) returns “You made a(n) C.”
letterGrade(43) returns “You made a(n) F.”

Description:
Write a function, using conditionals, that determines the letter grade from the numerical grade, passed in as
a parameter. The letter grade is determined by the following: [90, 100] - A, [80, 90) - B, [70, 80) - C, [60,
70) - D, [0, 60) - F (Assume the numerical grade argument is between 0 and 100.) After converting the
numerical grade to a letter grader, return the exact string, ‘You made a(n) [letter grade].’

Function Name: countLetter (10pts)
Parameters:

aWord – a string representing a word
aLetter – a string representing the character to count in aWord

Return:
count – integer representing the number of times aLetter appears in aWord

Test Cases:
countLetter(“There are many cows in the field”, “e”) returns 5
countLetter(“Where is Waldo?”, “w”) returns 0
countLetter(“How much wood can a woodchuck chuck?”, “c”) returns 6

Description:
Write a function that takes in a word and letter as parameters. The function will then count the

number of times that the letter appears in the word, using a loop. Remember that capital letters are
DIFFERENT from lower case letters! Return the number of times that the letter appears in the word or
sentence as an integer.

Function Name: eyeForI (10pts)
Parameters:

aString – any string
Return:

The modified string
Test Cases:

eyeForI(“William”) returns “Weyelleyeam”
eyeForI(“I do not like physics.”) returns “eye do not leyeke physeyecs.”
eyeForI(“This is so much fun!”) returns “Theyes eyes so much fun!”

Description:
Write a function that takes in a string as a parameter. Replace every “I” and “i” in the string with

“eye” and return the resulting string. The function MUST use a for-loop or while loop to build up the
new string while processing the original string letter by letter, not take advantage of the built in
str.replace function.

Function Name: wordMirror (10pts)
Parameters:

aString – any string
Return:

The mirrored string (reversed)
Test Cases:

wordMirror(“CS 1301”) returns “CS 13011031 SC”
wordMirror(“Atlanta”) returns “AtlantaatnaltA”
wordMirror(“georgiatech”) returns “georgiatechhcetaigroeg”

Description:
Write a function that takes in a string as its only parameter. You will then return a new string that

is the original string concatenated with the reflection of the original string (reverse the string). It may be
helpful to use a for-loop to reflect (reverse) the string. Hint: Add each letter letter to the FRONT of the new
string you are building up!

Function Name: encryption (10pts)
Parameters:

aString – a string that you want to encrypt
Return:

None
Test Cases:

encryption(“I love cs 1301”) prints “The encrypted code is: I 1o^() c$ 1301”
encryption(“Why is it freezing?”) prints “The encrypted code is: W#y i$ it f+()()zing ?”
encryption(“I play the saxophone”) prints “The encrypted code is: I p1@y t#() $@*op#on()”

Description:
Write a function that encrypts a message into a secret code. The encryption should reflect the

following conversions:
1. a - @ (i.e. Change every instance of “a” to “@”)
2. e - ()
3. h - #
4. l - 1 (lowercase-L to number one)
5. r - + (plus sign)
6. s - $
7. v - ^
8. x - *

You may use a loop to complete the following function, or you may find the .replace method in the string
module useful. After encrypting the message, print “The encrypted code is: [encrypted string]”.

Function Name: guessPassword (10pts)
Parameters:

password – a string that represents the secret password to be guessed.
Return:

None
Test Case:
>>> guessPassword(“abc123”)

>>> Incorrect Password!

>>> Incorrect Password!

>>> You entered the correct password!

Description:
Write a function that uses input to prompt the user to guess the password that is passed into the

function as a parameter. The function will continuously prompt the user to guess the password until the
correct password has been entered. The function should prompt the user for the password: “Please enter the
password: “. If the user enters an incorrect password, print “Incorrect password!” and prompt the user
again for the password. When the user correctly enters the password into the prompt, print “You entered
the correct password!” You MUST use a while-loop or recursion!

Function Name: countDown (10pts)
Parameters:

startNum – an integer that is the starting number to count down from
countBy– an integer that is the number you count down by

Return:
None

Test Cases:
>>> countDown(10, 2)

10
8
6
4
2
Blast Off!

>>> countDown(23, 7)
23
16
9
2
Blast Off!

>>> countDown(21, 4)
21
17
13
9
5
1
Blast Off!

Description:
Write a function to count down from the first parameter (startNum) by the second parameter

(countBy). The function should print the numbers from the given number to 1 (decreasing by the second
parameter each time...if you go past 1, don't print it!) in descending order, with each number being printed
on its own line. After printing the required numbers, on a separate line, print the string 'Blast off!'

Function Name: numberBowTie (10pts)
Parameters:

aNum – an integer (between 2 – 9) specifying ½ of the length of the longest row in the bow tie
Return:

None
Test Cases:

>>> numberBowTie(5)
1 1

22 22
333 333
4444 4444
5555555555
5555555555
4444 4444
333 333
22 22
1 1

>>> numberBowTie(9)
1 1
22 22
333 333
4444 4444
55555 55555
666666 666666
7777777 7777777
88888888 88888888
999999999999999999
999999999999999999
88888888 88888888
7777777 7777777
666666 666666
55555 55555
4444 4444
333 333
22 22
1 1

Description:
Write a function that takes in half the number of rows of the bow tie as a parameter. The function
will then draw a number bow tie on screen using the print function. See screenshots above in the
test cases for clarification. DO NOT HARD CODE THE 8 different printouts, you should have
one set of code that will work for any number between 2 and 9. In order to correctly code this
function, the spacing between elements in a row must be calculated mathematically.

Function Name: printTimes (20pts)
Parameters:

start – an integer that limits the LOWER bound of the times table (inclusive)
end – an integer that limits the UPPER bound of the times table (inclusive)
inc – a positive integer (less than the end value)

Return:
None

Description:

Write a printTimes(start, end, increment) function that will print a times table from ‘start’ up to
‘end’ by increments of ‘inc’, for any positive number. Note that your function must print a header (Times:
start...end) and a first column number that goes from ‘start’…’end’, while the interior of the grid is the X *
Y value. Hint: Using two loops (one inside of the other) is an easy (but not the only) way to accomplish
this. You may want to use tab characters ("\t") to space your grid out correctly.

Test Cases:

Grading Rubric
letterGrade

• Function name, parameters correct
• Correct use of conditionals (if…elif…else)
• Letter grade calculated correctly
• Return the string exactly as specified

10 pts
2
3
3
2

countLetter
• Function name, parameters correct
• Function examines each letter in the string
• Returns an integer
• Correctly counts the number of times the letter appears in the string

10 pts
2
4
1
3

eyeForI
• Function name, parameters correct
• Proper use of a for-loop or while-loop
• Correctly replaces all instances of “I” and “i” with “eye”
• Returns a string

10 pts
2
3
4
1

wordMirror
• Function name, parameters correct
• String is correctly mirrored
• Returns a string

10 pts
2
7
1

encryption
• Function name, parameters correct
• Correctly replaces each letter with the corresponding conversion
• Prints string, formatted exactly as instructed

10 pts
2
5
3

guessPassword
• Function header corect
• Uses a while-loop, or recursion
• Prompts user until correct password is entered
• Prints out correct statements when password is correct/incorrect

10 pts
2
2
4
2

countDown
• Function name, parameters correct
• A loop is used print one number per line
• Numbers are decremented correctly by the 2nd parameter
• “Blast Off!” is printed last

10 pts
2
4
3
1

numberBowTie
• Function name, parameters correct
• Use of a loop
• Correct spacing, length, and number of rows
• Prints correct shape

Note: Hardcoding all 8 possible printouts will result in 0 pts for this function.

10 pts
2
2
4
2

printTimes
• Function name, parameters correct
• Correctly prints times table with correct start, end, and incrementing numbers
• Table is nicely formatted
• Returns nothing

20 pts
3

10
5
2

