
CS 1301 Homework 9
Homework – Functional Programming and File Navigation!

Due: Wednesday, November 28th before 11:55pm

THIS IS AN INDIVIDUAL ASSIGNMENT!

You should work individually on this assignment. You may collaborate with other students in
this class. Collaboration means talking through problems, assisting with debugging, explaining a
concept, etc. Students may collaborate with only fellow students currently taking CS 1301, the
TAs, and the lecturer. You should not exchange code or write code for others. For individual
assignments, each student must turn in a unique program. Your submission must not be
substantially similar to another student's submission. Collaboration at a reasonable level will not
result in substantially similar code.

Scored out of 100 points

Files to Submit:

hw9.py (make sure to complete all 3 parts!)

If you need help, we have several resources to help you successfully complete this assignment:

- The TA Helpdesk – Schedule posted on class website.

- Email the TAs

- Jay's office hours

Notes:

• Don’t forget to include the required comments and collaboration statement (as outlined
on the course syllabus).

• Do not wait until the last minute to do this assignment in case you run into problems.

• If you find a significant error in the homework assignment, please let a TA know immediately.

Part 1- averageRGB
For the first problem, you will write a function called averageRGB, which will use reduce to help
calculate the average red, blue, and green values of pixels in a picture. The function does not
need to take in any parameters. First, your robot will take a picture. You do not need to show or
save this picture, but you may if you want to for testing purposes.

Your function should go through each pixel and put its color values in a separate list, meaning
once you’re done going through the picture, you’ll have three lists, one of red values, one of
green values, and one of blue values.

You should then use reduce to help compute the average (use it to sum up all the individual
values in each list). You may use a helper function or a lambda function with reduce. You must
use reduce somewhere in your function. Once you have your three averages, your function
should return those three averages in a tuple, with the red one first, the green one second, and
the blue one third. Because these are color values, you should round each average to the nearest
integer.

Sample function call:

>>> averageRGB()

(34, 209, 154)

>>>

Nothing should be output to the shell until the final return statement. You can use pictures you
have saved on your computer to test this program without having the robot take a picture, but
your final version should use a picture taken by the robot. You may create helper functions to
assist your main function.

Part 2- findFiles
For the second part, you will write a function called findFiles. This function should take in an
absolute file path as a parameter and return two lists, one that has the names of all Python files
and another that has the names of all text files. However, these lists need to contain just the
filenames and not any of the file extensions, meaning that example.txt would be returned as
example.

You can assume that the only two extensions you’ll be looking for are .py and .txt.

Your function should take in an absolute file path as a parameter. It should then use listdir (from
the os module) to get alist of all of the files in the directory. Use filter to go through the list and
store all filenames of python and text files into one or two lists. Whether or not you separate
them into two lists when you first store them is up to you.

In order to navigate through filenames, you’ll need to use the OS module. The Python webpage
for the OS module will be very useful, as will functions such as os.listdir.

Once you have all your filenames, your function should use map to go through your list(s) and
take the extensions off the filenames. This should not modify the actual files, just the names you
stored in your list(s).

You should then return a tuple of length two in which each item in the tuple is a list, the first
with all the python filenames and the second one with all the text filenames.

Sample function call:

Assume this absolute file path exists: C:\Users\Me\Desktop\Folder

…and its contents look like so:

http://docs.python.org/release/2.4/lib/os-file-dir.html
http://docs.python.org/release/2.4/lib/os-file-dir.html

Running findFiles on this folder would look like this:

>>> findFiles("C:\Users\Me\Desktop\Folder")

(['shoe-tying program'], ['teeny tiny text', 'ultimate jokes'])

>>>

Again, you may create helper functions to help you with this function.

Part 3- findAllFiles
The last part of this homework is an extension of the second part. You’re going to write a
function called findAllFiles that will do the same as findFiles—taking in an absolute file path as
a parameter and going through and finding all python and text files—except that you should
check all folders inside the initial directory and any folders inside those folders, and so on.

You are encouraged to use the function you wrote for part two to help with part three. You may
use recursion to solve this problem.

Once again, you’ll need to use the OS module, particularly functions on this page. Pay special
attention to the os.path.isdir() function.

Sample function call:

If you wanted to run findAllFiles on C:\Users\Me\Desktop\Folder, where the folder called File
13 contains a python file called robot dance.py and a text file called grocery list.txt, then running
findAllFiles would look like this:

>>> findAllFiles("C:\Users\Me\Desktop\Folder")

(['shoe-tying program', ‘robot dance’], ['teeny tiny text', 'ultimate jokes', ‘grocery list’])

>>>

If there were any folders inside File 13, they would need to be checked for python and text
documents as well. In order to handle sub-directories, you may need to use recursion.

http://docs.python.org/release/2.4/lib/module-os.path.html

Grading Rubric

Part 1- averageRGB- 20 points Total

Robot takes picture 2pts

Collects and separates color values 3pts

Uses reduce 5pts

Correctly computes averages 5pts

Returns tuple that contains the three averages 3pts

Averages are rounded to the nearest whole number 2pts

Part 2- findFiles- 40 points

Takes in absolute file path 3 pts

Gets filenames from absolute file path 2 pts

Uses filter correctly 10pts

Removes extensions from filenames 5pts

Uses map correctly 10pts

Returns tuple that contains correct lists 10pts

Part 3- findAllFiles- 40 points

Takes in absolute file path 5pts

Goes through all sub-folders (and sub-sub folders, etc) to find files 25pts

Returns tuple that contains correct lists 10 pts

