Neural Networks

Dendrites

* Neuron

* Brain information
processing emerges
from networks of
neurons
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e McCulloch & Pitts (1943)

— Linear combination of inputs

— “fire” if threshold is exceeded
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Nodes are neurons
Thereis a link from jto i
Looks like a
: : matrix
j sends a signal of strength g, lookup

i receives it with weight W, ;

Additionally, each node has a bias, ay, W,



* Inputto a node: ini=2Wj,iaj

* Activation function: . = g(in,)

/
e Whatis g?

— A function that computes near 1.0 when the “right” inputs are given
and computers near 0.0 when the “wrong” inputs are given

— W, ; sets the threshold — actual inputs must overcome bias
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* Better (later when we need to learn)



Comparison to logic

e Can replicate logic gates with nodes

 Can compute any boolean logic statement with
neural network
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Network Structures

e Feed-forward network ]

— Represents a function of current inputs
— No internal state other than weights

— Output is the result of the function

e Recurrent network

— Like feed-forward, but feeds its outputs
into its own inputs

— Can get oscillations (negative weight
on its own inputs) or chaotic behavior
or stable behavior

— Can persistent state (like short-term
memory)




A simple network

Hidden units

g(Wsy-as+ Wys - ay)
g W3- gWis-ay+Wsos-ag) +Wys-g(Wiy- a1+ Woy-as))

eAdjusting the weights changes the function that the network represents
*This is how learning occurs



e Classification

— Boolean: single output node

— K-way: k output nodes

* Perceptron network

— Single-layer feed-forward
classification




Perceptron learning

 Want the network to learn to replicate some
function

* Adjust the weights of the network to minimize
error on the training set
— Optimization search in weight space
— How to measure error: sum of squared errors



Multilayer network learning

* Error can be caused by hidden nodes

e Back-propagation of error

— Each hidden node is responsible for some fraction of the
total error based on strength of connections

— Update weights based on the amount of error each node is
responsible for

Output units a;

Hidden units a

Input units ar




Setting up a neural network learning
problem

* Decide structure
— Perceptron network

— Multilayer network
* Multilayer usually has one hidden layer
* How many hidden nodes is a trial-and-error process

— Should layers be fully connected?
e Usually yes
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Training on restaurant data

Error decreases to zero — converges to a perfect
fit on training data

Training curve is slower to reach asymptote than
decision tree

May need to manually tweak network structure
to get perfectly optimal
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Learning network structure

Previous examples assume structure is given

Random restart, changing number of hidden
nodes

Neuro-evolution

— Genetic algorithm is used to “grow” a network
using crossover and mutation

— Fitness function is minimization of error

http://eplex.cs.ucf.edu/dance evolution/




Neuroevolution of structure

* Binary encoding
— Bit string encodes entire connection matrix
— Crossover swaps part of bit string

* Graph encoding
— Each gene is a node or a link (in, out)
— Crossover: subgraph swapping
— Mutation: add link, add node

e Evolutionary programming

— No crossover — it can lead to loss of functionality or
illegal variants



