Neural Networks

Dendrites

* Neuron

* Brain information
processing emerges
from networks of
neurons

, \
Cell Body \/%



e McCulloch & Pitts (1943)

— Linear combination of inputs

— “fire” if threshold is exceeded

Nodeii

Node j

4
=CUIDES

Nodes are neurons
Thereis a link from jto i
Looks like a
: : matrix
j sends a signal of strength g, lookup

i receives it with weight W, ;

Additionally, each node has a bias, ay, W,



* Inputto a node: ini=2Wj,iaj

* Activation function: . = g(in,)

/
e Whatis g?

— A function that computes near 1.0 when the “right” inputs are given
and computers near 0.0 when the “wrong” inputs are given

— W, ; sets the threshold — actual inputs must overcome bias

g(in;) A g(in;)

+1

e
ini

* Better (later when we need to learn)



Comparison to logic

e Can replicate logic gates with nodes

 Can compute any boolean logic statement with
neural network

ap=-1 ap=-1 ap=-1
Wy=15 W,= 05 W,=-0.5
W1>~ Wl}* ——
///" ///' Wy =-1
W, =1 W, =1

AND OR NOT



Network Structures

e Feed-forward network ]

— Represents a function of current inputs
— No internal state other than weights

— Output is the result of the function

e Recurrent network

— Like feed-forward, but feeds its outputs
into its own inputs

— Can get oscillations (negative weight
on its own inputs) or chaotic behavior
or stable behavior

— Can persistent state (like short-term
memory)




A simple network

Hidden units

g(Wsy-as+ Wys - ay)
g W3- gWis-ay+Wsos-ag) +Wys-g(Wiy- a1+ Woy-as))

eAdjusting the weights changes the function that the network represents
*This is how learning occurs



e Classification

— Boolean: single output node

— K-way: k output nodes

* Perceptron network

— Single-layer feed-forward
classification




Perceptron learning

 Want the network to learn to replicate some
function

* Adjust the weights of the network to minimize
error on the training set
— Optimization search in weight space
— How to measure error: sum of squared errors



Multilayer network learning

* Error can be caused by hidden nodes

e Back-propagation of error

— Each hidden node is responsible for some fraction of the
total error based on strength of connections

— Update weights based on the amount of error each node is
responsible for

Output units a;

Hidden units a

Input units ar




Setting up a neural network learning
problem

* Decide structure
— Perceptron network

— Multilayer network
* Multilayer usually has one hidden layer
* How many hidden nodes is a trial-and-error process

— Should layers be fully connected?
e Usually yes



=
“14 1 8
Q) et
»ni2 @ 0.9
o e
£10 5 0.8
© 8 ©
- (O]
5 = 0.7
5 6 S
qt) 4 .5 0.6 Decision tree
= T
o 2 9 05
= o
0 o 0.4

Training on restaurant data

Error decreases to zero — converges to a perfect
fit on training data

Training curve is slower to reach asymptote than
decision tree

May need to manually tweak network structure
to get perfectly optimal

50 100 150 200 250 300 350 400
Number of epochs

0 10 20 30 40 50 60 70 80 90 100
Training set size - RESTAURANT data



Learning network structure

Previous examples assume structure is given

Random restart, changing number of hidden
nodes

Neuro-evolution

— Genetic algorithm is used to “grow” a network
using crossover and mutation

— Fitness function is minimization of error

http://eplex.cs.ucf.edu/dance evolution/




Neuroevolution of structure

* Binary encoding
— Bit string encodes entire connection matrix
— Crossover swaps part of bit string

* Graph encoding
— Each gene is a node or a link (in, out)
— Crossover: subgraph swapping
— Mutation: add link, add node

e Evolutionary programming

— No crossover — it can lead to loss of functionality or
illegal variants



