Designing a Learning Agent

- What type of performance element?
- Which functional component to be learned?
- How that functional component is represented
- What type of feedback is available?

Performance Element	Component	Representation	Feedback
Alpha-beta search	Eval. fn	Weighted linear fn.	Win/loss
Logical agent	Transition model	Successor-state axioms	outcome
Utility-based agent	Transition model	Dynamic bayes net	outcome
Simple-reflex agent	Percept-action fn.	Neural network	Correct action

Types of Learning

Supervised learning

- Give correct answer for each instance
- Learn a function from examples of inputs/outputs

Unsupervised learning

- No correct answers known
- Can learn patterns in the input
- Can't learn what to do w/o feedback (don't know whether states are desirable/undesirable)
- But you can learn a probability distribution

Reinforcement learning

- Sometimes you get a reward, sometimes you get punished
- Example: a waiter will learn to prefer certain behaviors because he gets bigger tips
- Typically, trying to learn how the environment works

• Example: curve fitting

• Example: curve fitting

• Example: curve fitting

Example: curve fitting

H is consistent if it agrees with all examples

Example: curve fitting

Given multiple consistent hypotheses, pick the simplest one

Learning Decision Trees

- A simple technique whereby the computer learns to make decisions that emulate human decision-making
- Can also be used to learn to classify
 - A decision can be thought of as a classification problem
- An object or situation is described as a set of attributes
 - Attributes can have discrete or continuous values
- Predict an outcome (decision or classification)
 - Can be discrete or continuous
 - We assume positive (true) or negative (false)

Eat at a restaurant?

• Attributes:

- Alternate: suitable alternate restaurant nearby (y/n
- **Bar**: A bar to wait in (y/n)
- Fri/Sat: it's a Friday or Saturday (y/n)
- Hungry: y/n
- Price: price range (\$, \$\$, \$\$\$)
- Raining: y/n
- Reservation: we made a reservation (y/n)
- Type: french, italian, thai, burger
- WaitEstimate: 0-10, 10-30, 30-60, >60
- Patrons: none, some, full

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	Τ	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Supervised Learning

- Training set
- Test set

Neg: 2 5 7 9 10 11

Type

French

Burger

Italian

Thai

Pos: 1

Neg: 5

Pos: 6

Neg: 10

Pos: 48

Neg: 2 11

Pos: 3 12

Neg: 78

- Learned from the 12 examples
- Why doesn't it look like the previous tree?
 - Not enough examples
 - No reason to use rain or reservations
 - Hasn't seen all cases
- Learning is only as good as your training data

Which attribute to choose?

- The one that gives you the most information (aka the most diagnostic)
- Information theory
 - Answers the question: how much information does something contain?
 - Ask a question
 - Answer is information
 - Amount of information depends on how much you already knew
- Example: flipping a coin
 - If you don't know that coin flipping is random: 1 bit of information is gained
 - If you do know: 0 bits of information is gained

• If there are n possible answers, $v_1...v_n$ and v_i has probability $P(v_i)$ of being the right answer, then the amount of information is:

$$I(P(v_1),...,P(v_n)) = \sum_{i=1}^{n} -P(v_i)\log_2 P(v_i)$$

Example: coin toss

For a training set:

p = # of positive examples

n = # of negative examples

$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Probability of a positive example a negative example

Probability of

For our restaurant behavior

$$-p = n = 6$$

$$- I() = 1$$

 Would not be 1 if training set weren't 50/50 yes/no, but the point is to arrange attributes to increase information gain

Measuring attributes

- Information gain is a function of how much more information you need after applying an attribute
 - If I use attribute A next, how much more information will I need?
 - Use this to compare attributes

Neg: 25791011

French

Burger

Italian

Thai

Pos: 3 12

Pos: 1 Neg: 5 Pos: 6

Neg: 10 Neg: 2 11

Pos: 48

Thai

Neg: 78

Burger

Remainder(type) =
$$\frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right) = 1$$
 bit

French Italian Thai Burger

Italian

Neg: 25791011

Patrons

None

Some

Full

Pos: nil

Neg: 7 11

Pos: 1368

Neg: nil

Pos: 412

Neg: 2 5 9 10

Remainder(patrons) =
$$\frac{2}{12}I\left(\frac{0}{2},\frac{2}{2}\right) + \frac{4}{12}I\left(\frac{4}{4},\frac{0}{4}\right) + \frac{6}{12}I\left(\frac{2}{6},\frac{4}{6}\right) \approx 0.459 \text{ bit}$$

none

some

full

- Not done yet
- Need to measure information gained by an attribute

Gain(A) =
$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$
 - remainder(A)

- Pick the biggest
- Example:

- Gain(type) =
$$I(\frac{1}{2},\frac{1}{2}) - \left(\frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right)\right)$$

= 0 bits

- Gain(patrons) =
$$I(\frac{1}{2},\frac{1}{2}) - \left(\frac{2}{12}I\left(\frac{0}{2},\frac{2}{2}\right) + \frac{4}{12}I\left(\frac{4}{4},\frac{0}{4}\right) + \frac{6}{12}I\left(\frac{2}{6},\frac{4}{6}\right)\right)$$

 $\approx 0.541 \text{ bits}$

Neg: 25791011

Patrons

Patrons=full, hungry=yes

Patrons=full, hungry=no

gain(hungry) =
$$I\left(\frac{2}{6}, \frac{4}{6}\right) - \left[\frac{2}{6}I\left(\frac{0}{2}, \frac{2}{2}\right) + \frac{4}{6}I\left(\frac{2}{4}, \frac{2}{4}\right)\right]$$

no yes

$$= 0.9182958 - [0 + (4/6)(1)]$$

≈ 0.251 bits

Full

Pos: 4 12

Neg: 2 5 9 10

Hungry

No /

Pos: nil

Neg: 5 9

Yes

Pos: 4 12

Neg: 2 10

Decision-tree-learning (examples, attributes, default)

```
IF examples is empty THEN RETURN default
ELSE IF all examples have same classification THEN RETURN classification
ELSE IF attributes is empty RETURN majority-value(examples)
ELSE
  tree = new decision tree with best as root
  m = majority-value(examples)
  FOREACH answer v<sub>i</sub> of best DO
       examples<sub>i</sub> = {elements of examples with best=v<sub>i</sub>}
       subtree; = decision-tree-learning(examples;, atributes-{best}, m)
       add a branch to tree based on v<sub>i</sub> and subtree<sub>i</sub>
  RETURN tree
```

How many hypotheses?

- How many distinct trees?
 - N attributes
 - = # of boolean functions
 - = # of distinct truth tables with 2ⁿ rows
 - $= 2^2 n$
 - With 6 attributes: > 18 quintillion possible trees

How do we assess?

- How do we know h ≈ f?
- A learning algorithm is good if it produces hypotheses that do a good job of predicting decisions/classifications from unseen examples
- Collect a large set of examples (with answers)
- 2. Divide into training set and test set
- 3. Use training set to produce hypothesis h
- 4. Apply h to test set (w/o answers)
 - Measure % examples that are correctly classified
- 5. Repeat 2-4 for different sizes of training sets, randomly selecting examples for training and test
 - Vary size of training set m
 - Vary which m examples are training

- Plot a learning curve
 - % correct on test set, as a function of training set size

- As training set grows, prediction quality should increase
 - Called a "happy graph"
 - There is a pattern in the data AND the algorithm is picking it up!

Noise

- Suppose 2 or more examples with same description (Same assignment of attributes) have different answers
- Examples: on two identical* situations, I do two different things
- You can't have a consistent hypothesis (it must contradict at least one example)
- Report majority classification or report probability

Overfitting

- Learn a hypothesis that is consistent using irrelevant attributes
 - Coincidental circumstances result in spurious distinctions among examples
 - Why does this happen?
 - You gave a bunch of attributes because you didn't know what would be important
 - If you knew which attributes were important, you might not have had to do learning in the first place
- Example: Day, month, or color of die in predicting a die roll
 - As long as no two examples are identical, we can find an exact hypothesis
 - Should be random 1-6, but if I roll once every day and each day results in a different number, the learning algorithm will conclude that day determines the roll
- Applies to all learning algorithms