Designing a Learning Agent

* What type of performance element?

* Which functional component to be learned?

 How that functional component is represented
What type of feedback is available?

Performance Component Representation Feedback
Element

Alpha-beta search Eval. fn Weighted linear fn. Win/loss

Logical agent Transition model Successor-state outcome
axioms

Utility-based agent Transition model Dynamic bayes net outcome

Simple-reflex agent Percept-action fn. Neural network Correct action

Types of Learning

* Supervised learning
— Give correct answer for each instance

— Learn a function from examples of inputs/outputs

* Unsupervised learning
— No correct answers known
— Can learn patterns in the input

— Can’t learn what to do w/o feedback (don’t know whether states are
desirable/undesirable)

— But you can learn a probability distribution

* Reinforcement learning
— Sometimes you get a reward, sometimes you get punished

— Example: a waiter will learn to prefer certain behaviors because he
gets bigger tips

— Typically, trying to learn how the environment works

Induction

 Example: curve fitting

f(x)

- X

Induction

 Example: curve fitting

f(x)

hl

Induction

 Example: curve fitting

J(x)

Induction

 Example: curve fitting
J(x)

H is consistent if it
agrees with all
examples

h3

Induction

* Example: curve fitting Given multiple

consistent hypotheses,
pick the simplest one

f(x) ha

(Ockham'’s razor)

Learning Decision Trees

A simple technique whereby the computer learns to
make decisions that emulate human decision-making

Can also be used to learn to classify
— A decision can be thought of as a classification problem
An object or situation is described as a set of attributes

— Attributes can have discrete or continuous values

Predict an outcome (decision or classification)
— Can be discrete or continuous

— We assume positive (true) or negative (false)

Eat at a restaurant?

e Attributes:

— Alternate: suitable alternate restaurant nearby (y/n
— Bar: A bar to wait in (y/n)

— Fri/Sat: it’s a Friday or Saturday (y/n)

— Hungry: y/n

— Price: price range (S, SS, SSS)

— Raining: y/n

— Reservation: we made a reservation (y/n)

— Type: french, italian, thai, burger

— WaitEstimate: 0-10, 10-30, 30-60, >60

— Patrons: none, some, full

Patrons?

WaitEstimate?

Hungry”

Alternate?

Rammg”

€S

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est || WillWait
X T| F | F T | Some| $$% F T | French| 0-10 T
X | F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F F |Some| § F F | Burger| 0-10 T
X4 T | F | T | T | Ful $ F F | Thai |10-30 T
X5 T | F | T | F | Full | $%% F T | French| >60 F
Xs F| T | F T |Some| $% T T | Italian | 0-10 T
X7 F| T | F F | None| $ T F | Burger| 0-10 F
X3 F| F | F T | Some| $$ T T | Thai | 0-10 T
X F| T | T /| F | Ful $ T F | Burger| >60 F
X10 T | T | T T | Full | $%% F T | Italian | 10-30 F
X1 F| F | F F | None| § F F | Thai | 0-10 F
X9 T | T | T T | Full $ F F | Burger | 30-60 T

Supervised Learning

* Training set
* Test set

Pos: 1
Neg: 5

Pos: 13468 12
Neg:25791011

Type

French

Italian

Pos: 6 Pos: 4 8

Neg: 10 Neg: 2 11

Pos: 312
Neg: 78

Pos: nil
Neg: 711

NO

None

Pos: 13468 12
Neg:25791011

Patrons

Some

Pos: 1368
Neg: nil

YES

Full

Pos: 4 12

Neg: 25910

No

Hungry

Pos: nil

Neg: 59

NO

Yes

Pos: 4 12
Neg: 2 10

Learned from the 12 examples

Why doesn’t it look
like the previous tree?

— Not enough examples

— No reason to use
rain or reservations

— Hasn’t seen all cases

Learning is only as good
as your training data

Patrons?

None NI

Hungry?
Yes No
Type?

Fri/Sat?

No Yes

Burger

Which attribute to choose?

* The one that gives you the most information (aka the most
diagnostic)

* |nformation theory

— Answers the question: how much information does something
contain?

— Ask a question
— Answer is information

— Amount of information depends on how much you already
knew

 Example: flipping a coin

— If you don’t know that coin flipping is random: 1 bit of
information is gained

— If you do know: O bits of information is gained

If there are n possible answers, v,...v, and
v, has probability P(v,) of being the right answer, then the
amount of information is:

I(P(v),..P(v,)) = ¥ -P(v)log, P(v))

Example: coin toss

* For a training set:
p = # of positive examples
n = # of negative examples

I(p,n)=_plog2p_n10g2n
p+n p+n p+n p+n p+n p+n

Probability of Probability of
a positive example a negative example

 For our restaurant behavior |Pos: 13468 12
Neg:25791011

—p=n= 6
—1()=1
— Would not be 1 if training set weren’t 50/50 yes/no,

but the point is to arrange attributes to increase
information gain

Measuring attributes

* |nformation gain is a function of how much more
information you need after applying an attribute

— If | use attribute A next, how much more information will |
need?

— Use this to compare attributes

Instances of Positive examples Negative examples
the attribute for this answer for this answer
1%
p,+ 1 P; n;

Remainder(A) = .
i=1 p+n pi+ni pi+ni

attribute

: Total answers Examples classified by A
Different answers

Pos: 13468 12
Neg:25791011

Type
French
Burger
Italian Thai
Pos: 1 Pos: 6 Pos: 4 8 Pos: 312
Neg: 5 Neg: 10 Neg: 2 11 Neg: 7 8

emalndenttyPel = 12272 " 12 \22) T 12 a4 T 12\) T

French ltalian Thai Burger

Pos: 13468 12
Neg:25791011

Patrons
None
Full
Some
Pos: nil Pos: 1368 Pos: 412
Neg: 7 11 Neg: nil Neg:25910

2 (02 4 (4 0 6 (2 4
Remainder(patrons) = E 5,5 +EI —, +El g,g = 0.459 bit

none some full

Not done yet
Need to measure information gained by an attribute

Gain(A) = I(P : k)—remainder(A)
p+n p+n

Pick the biggest

Example:

~ Gaitype) =105 (241 2L 2 22) 222)
= 0 bits

— Gain(patrons) = 1(}5,%) — (%’(%%) * %’(%2) * %I(%%))

=~ 0.541 bits

Pos: 13468 12
Neg:25791011

Patrons
Patrons=full, hungry=yes
Full
Patrons=full, hungry=no
24\ (2 (02) 4 (22 ros: 412
gain(hungry)= I| ——|-|=-I| == |+—=1| —,— Neg: 25910
6 6 6 \22) 6 \44
Hungry
no yes Yes
No
=0.9182958 - [0 + (4/6)(1
[0+(4/6)(1)] Pos: nil Pos: 412

~ 0.251 bits Neg: 5 9 Neg: 210

Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default
ELSE IF all examples have same classification THEN RETURN classification
ELSE IF attributes is empty RETURN majority-value(examples)
ELSE
best = choose(attributes, example) Where info gain happens
tree = new decision tree with best as root
m = majority-value(examples)
FOREACH answer v, of best DO
examples. = {elements of examples with best=v.}
subtree, = decision-tree-learning(examples,, atributes-{best}, m)

add a branch to tree based on v; and subtree,
RETURN tree

How many hypotheses?

* How many distinct trees?
— N attributes

= # of boolean functions
= # of distinct truth tables with 2" rows
= 2A27n

— With 6 attributes: > 18 quintillion possible trees

How do we assess?

e How do we know h = f?

* Alearning algorithm is good if it produces hypotheses that do a
good job of predicting decisions/classifications from unseen
examples

1. Collect a large set of examples (with answers)
2. Divide into training set and test set

3. Use training set to produce hypothesis h

4

Apply h to test set (w/o answers)
— Measure % examples that are correctly classified
5. Repeat 2-4 for different sizes of training sets, randomly selecting
examples for training and test
— Vary size of training set m
— Vary which m examples are training

* Plot alearning curve
— % correct on test set, as a function of training set size
1 .
3 0.9 1
17
2 0.8 ;

C
S 0.7 ;
(&)
206
3
2> 0.5

o~

0.4

0 10 20 30 40 50 60 70 80 90100
Training set size
* Astraining set grows, prediction quality should increase

— Called a “happy graph”
— There is a pattern in the data AND the algorithm is picking it up!

Noise

Suppose 2 or more examples with same
description (Same assignment of attributes) have
different answers

Examples: on two identical* situations, | do two
different things

You can’t have a consistent hypothesis (it must
contradict at least one example)

Report majority classification or report
probability

Overfitting

* Learn a hypothesis that is consistent using irrelevant attributes

— Coincidental circumstances result in spurious distinctions among
examples

— Why does this happen?

* You gave a bunch of attributes because you didn’t know what would be
important

* If you knew which attributes were important, you might not have had to do
learning in the first place

 Example: Day, month, or color of die in predicting a die roll

— As long as no two examples are identical, we can find an exact
hypothesis

— Should be random 1-6, but if | roll once every day and each day results

in a different number, the learning algorithm will conclude that day
determines the roll

* Applies to all learning algorithms

