Your Name:

1/6

CS 1301 CS1 with Robots Summer 2007 — Exam 1

1. Vocabulary Matching: (15 points)

Write the number from the correct definition in the blank next to each term on the left:

_12_Print statement
__1_Program

___3 Runtime error
_14_Semantic error
_11_Syntax error
__8_Floating-point
__6_Integer
__4_Integer division
__2_Keyword
__7_Operator
__5_Variable
_10_Function
_13_function call
__9_Type conversion
_15_Frame

One point for each
correct answer.

L.

2.

b

x

10.

11.

12.

13.

14.

15.

A sequence of instructions that specifies to a computer
actions and computations to be performed.

A reserved word that is used by the compiler to parse a
program; you cannot use things like 1, def, andwhile as
variable names.

An error that does not occur until the program has started to
execute but that prevents the program from continuing.

An operation that divides one integer by another and yields
an integer. It yields only the whole number of times that the
numerator is divisible by the denominator and discards any
remainder.

A name that refers to a value.

A Python data type that holds positive and negative whole
numbers.

A special symbol that represents a simple computation like
addition, multiplication, or string concatenation.

A format for representing numbers with fractional parts.

An explicit statement that takes a value of one type and
computes a corresponding value of another type.

A named sequence of statements that performs some useful
operation. They may or may not take parameters and may or
may not produce a result.

An error in a program that makes it impossible to parse (and
therefore impossible to interpret).

An instruction that causes the Python interpreter to display a
value on the screen.

A statement that executes a function. It consists of the name
of the function followed by a list of arguments enclosed in
parentheses.

An error in a program that makes it do something other than
what the programmer intended.

A box in a stack diagram that represents a function call. It
contains the local variables and parameters of the function.

Your Name:

2/6

2. Vocabulary Matching - Part 2 (15 points)
Write the number from the correct definition in the blank next to each word:

_11_Modulus operator
__1 Boolean expression
__6_Conditional statement
__ 3 Comparison operator
__7 Block

_ 13 Recursion

__ 9 Base case
_12_Temporary variable
10 None

__ 8 Guardian

__ 2 Incremental development
_ 14 Multiple assignment
_15_Encapsulate

__ 4 Generalize

5 Iteration

One point per correct answer.

1.
2.

10.

11.

12.

13.

14.

15.

An expression that is either true or false.

A program development plan intended to avoid
debugging by adding and testing only a small amount of
code at a time.

One of the operators that compares two values: ==, !=,
>, <,>= and <=.

To replace something unnecessarily specific (like a
constant value) with something appropriately general
(like a variable or parameter).

Repeated execution of a set of statements using either a
recursive function call ora loop.

A statement that controls the flow of execution depending
on some condition.

A group of consecutive statements with the same
indentation.

A condition that checks for and handles circunstances
that might cause an error.

A branch of the conditional statement in a recursive
function that does not result in a recursive call.

A special Python value returned by functions that have no
return statement, or a return statement without an
argument.

An operator, denoted with a percent sign (%), that works
on integers and yields the remainder when one number is
divided by another.

A variable used to store an intermediate value in a
complex calculation.

The process of calling the function that is currently
executing.

Making more than one assignment to the same variable
during the execution of a program.

To divide a large complex program into components (like
functions) and isolate the components from each other
(by using local variables, for example).

Your Name: 3/6

3. Write Code (5 points)

Write a function get_number that prompts the user to enter a number and returns a
floating point value. You do NOT need to check for errors. (Assume the user always
enters a valid number).

def get_number(): +1 pts = Function prompts user for number
num_str = raw_input("Enter a number!") +2 pts = Function returns the value
num_float = float(num_str) +2 pts = Function converts string to float.

return(num_float)

4. Write Code (5 points)
Write a function return_largest that accepts 3 parameters (x,y,z) and returns the largest
of the three. For example, return_largest(7, -34, 23.8) should return 23.8.

def return_largest(X,Y,Z): +2pts = function takes 3 parameters
if (X>=Y)and (X>=7): +2pts = correct value is selected
return(X) +1pts = value is returned.
elif (Y >=X)and (Y >=7):
return(Y) Test cases to try out on your code:
else: return_largest(4,4,5)
return(Z) return_largest(5,5,4)

5. Write Code (5 points)

Write a function draw_a_square() that will drive your scribbler robot in a square
(polygon with 4 equal sides and four 90 degee corners), and beep at each of the four
corners. You may assume that turnRight(1, 0.5) will turn your scribbler exactly 90
degrees. You do not need to include the from myro import * or initialize() calls, and you
may assume they have already been done for you. Do NOT use a loop, and do NOT use
recursion.

def draw_a_square(): +2 = does a forward,turn, and beep each time, in
forward(1,1) any order (but order must be consistant)
turnRight(1,0.5) +2 =repeats 4 times without for/while loops
beep(1,800) +1 =1in a function

<above repeated 3 more times>

Your Name: 4/6

defn_lines(n):
ifn>0:
print £ ine!”
n_lines(n-1)

6a. Program Comprehension (1 point)

How many times will the string “Line!” be printed when n_lines is called with n=47?
Number Four Note that 0 > 0 is False, so the print statement does not
execute when N=0.

6b. Simple Stack Diagram (4 points)
Draw a stack diagram for the function n_lines called with n = 4. (i.e. n_lines(4))
Include the value of any local variables, and remember to start with __main__.

__main__ + 2 points - stack has 5 function calls of n_lines.
n_lines: +1 point - starts with __main__
N=4 +1 point - N =4,3,2.1,0 in the 5 calls.
n_lines:
N=3
n_lines:
N=2
n_lines:
N=1
n_lines:

N=0

7. Write Code (4 points)

Write a function with infinite recursion named run_forever. Your function should have
no parameters, and it should run forever when called (on an ideal computer, in a real
computer it would eventaully run out of memory.) You may add a print statement if you
wish.

def run_forever() +2 points - it's a function
run_forever() # This is a recursive call +2 points - that calls itself, without a termination
clause.

Your Name: 5/6

8. Write Code (6 points)
Rewrite the function n_lines from question 6 using a for loop instead of recursion.

def n_lines(N): +1 pt =it's in a function
for i in range(N): +1 pt = function accepts N as a parameter
print "Line!" +2 pt = The for statement is correct (executs N
times)

+2 pt = Function has the same behavior as the
original: Prints Line! N times.

9. Write Code (8 points)
Rewrite the function n_lines from question 6 and 8 using a while loop instead of

recursion or a for loop. You may use n as your looping variable.

def n_lines(N) +1 pt =it's in a function
while N > 0: +1 pt = Function accepts N as a parameters
print "Line!" +2 pts = While statement is correct
N=N-1 +2 pts = Looping Variable is decremented

+2 pts = Function has same behavior as the
original: Prints Line! N times.

10. Stack Diagram (4 points)

Draw a stack diagram for the code you wrote for problem 9 when n_lines is called with
n=4 (e.g. n_lines(4)). Remember to start with main and to show all local variables.
If local variables change durring execution, strike-themout and show the new value each

time they change.

+ 2 =has 2 frames, __main__ and n_lines

__Main__ +2 = Shows N (or looping variable) decrementing
n_lines: as the while loop runs. (-1 point if they forget the
N—4 last value of the looping variable that makes the
—N=3 continuation condition turn false.)

—N=2

z
Il
o

Your Name: 6/6

11. Python Expression Evaluation (14 points)
Pretend that you are the Python Interpreter (IDLE window). What do you print or return
when each of the following statements are entered?

Example: (7+4)/2 Result:__ 5
Example: range(4) Result: [0,1,2,3]
. (7.0+4)/2 Result: 5.5
2. 7+3/2 Result: &
3. range(4,8) Result: [4,5,6,7]
4. range(4,8,2) Result: [4,6]
5. 7.0>5.0 Result: True
6. 7+3/2>8 Result: False
7. print "Pumpkin %.3f" %3.1459 Result: Pumpkin 3.146

Grading: 2 points for each correct answer.
12. Extra Credit (1 point)

What is the name you gave your robot?

Grading: Any name gets a point!

13. Extra Credit (2 points)

Where does Python get it's name?

Monty Python's Flying Circus, a British comedy TV show.

14. Extra Credit (3 points)
What are Isaac Asimov's 3 laws of robotics?

1. A robot may not injure a human being or, through inaction, allow a human being © come to harm.

2. A robot must obey orders given to it by human beings except where such orders would conflict
with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First
or Second Law.

Grading: 1 point for each law that is close.

