
CS 1301 Extra Credit Problem Set

Due: Wed October 1st before 6pm. (NO Late Turn-In's accepted!)

Because this extra credit problem set is worth test points, you MAY NOT look at other people's code!

You are allowed to talk with other students about how they solved the problems, and you may tell other

students how to solve the problems, but you MAY NOT show other people your code or look at other

people's code! If you get help from others (or help others) you should include their names in your

collaboration statement at the top of the file.

This extra credit problem set will allow you to gain up to 13 extra credit test points! This could raise

your grade on Exam 1 by almost 10%. To receive full credit, you must complete all problems. Every

problem you do not complete will subtract 4 point from the 13 possible points you receive. (Luckily,

you can't earn negative points!)

Each problem will require you to write a function. Download the ec1.py file and write your functions at

the top of the file, using the specified function name and parameter(s). When you want to test your

functions, you can call the test() function that has been provided at the bottom of the file. The test()

function will call each of your functions (if you have named them correctly!) and tell you if they pass a

few simple tests. NOTE: If your function passes the included tests, it is likely to be correct, but TA's

may find other problem when they read your code. Just because a function passes all the tests does not

guarantee that you got it correct (but the likelihood is high!) Also, the output of some functions are not

tested, or are left for you to test yourself.

1. Write a function countJs() that accepts one parameter which it may assume is a string. This

function should return an integer which is the count of how many “J”'s (capital letter j) it finds

in the string.

2. Write a function maximum() that accepts one parameter which it may assume is a list. The list

may have any elements upon which the < (less-than) operator is defined. Your function should

return the “maximum” element of the list (as defined by the < operator. If the list is empty,

your function should return None (of None-Type), which is easy to do by using a return

statement with nothing behind it.

3. Write a function getFloat() that takes a string as a parameter. The function should print the

string that is passed in as a parameter (using it as a prompt for the user) and then wait for user

input. The function must attempt to convert the user input into a float and return it. If the user

does not enter a valid float, the function should notify the user that they entered an invalid

number, and ask them again, repeating until the user enters a valid number. Once the function

successfully retrieves a valid float from the user, it should return it.

4. Write a function isPrime() that takes one parameter (you can assume this parameter will be in

the form of a positive integer) and checks to see if it is prime. (A prime number is a positive

integer that has exactly two positive integer factors, 1 and itself.) If the number is prime, your

function should return True, if not, it should return False. [We will not test this function with

any numbers larger than 10,000, so speed isn't terribly important.]

5. The pre-existing function getHumidity(zipCode) goes out on the internet and reads a weather

website page for a specific zip code. (Note that the zipCode parameter expects a string!).

Currently, it just prints the HTML from the webpage to the screen. Modify this function so that

instead of printing the HTML to the screen, it returns just the current humidity at that zip code

(as a float)!

6. Write a function changeGrade() that accepts a single parameter (a string). Your function should

look for the following letters in the string, and return a new string with the appropriate

substitutions made:

If you find a: Replace it with a:

F D

D C

C B

B A

7. Write three functions named countdownWhile(), countdownFor(), and countdownRecursive().

Each of the three functions should take one parameter, which they can assume is a positive

integer. Each function should print a “countdown” starting at the number given and going down

to 1, printing one number per line. After the functions reach 1, they should print “Done!” on the

next line. In the first function, you may only use a while loop. In the 2nd function you may only

use a for loop, and in the 3rd function you may only use an if statement and a recursive call. The

output of all three functions are identical, but how they archive the output is slightly different.

8. Write a function decimalToBinary() that takes one parameter (you can assume this parameter

will be in the form of an integer). Your function should assume the parameter represents a

decimal number, and return a string made up of 0's and 1's representing the binary

representation of that number.

If you have any questions about how your functions should behave, look at the test code inside the test()

function. This test code will show how the functions should be called and give default inputs and

outputs.

